Deep-ocean mixing driven by small-scale internal tides - Météo-France Accéder directement au contenu
Article Dans Une Revue Nature Communications Année : 2019

Deep-ocean mixing driven by small-scale internal tides

Résumé

Turbulent mixing in the ocean is key to regulate the transport of heat, freshwater and biogeochemical tracers, with strong implications for Earth’s climate. In the deep ocean, tides supply much of the mechanical energy required to sustain mixing via the generation of internal waves, known as internal tides, whose fate—the relative importance of their local versus remote breaking into turbulence—remains uncertain. Here, we combine a semi-analytical model of internal tide generation with satellite and in situ measurements to show that from an energetic viewpoint, small-scale internal tides, hitherto overlooked, account for the bulk (>50%) of global internal tide generation, breaking and mixing. Furthermore, we unveil the pronounced geographical variations of their energy proportion, ignored by current parameterisations of mixing in climate-scale models. Based on these results, we propose a physically consistent, observationally supported approach to accurately represent the dissipation of small-scale internal tides and their induced mixing in climate-scale models.

Mots clés

Domaines

Océanographie
Fichier principal
Vignette du fichier
s41467-019-10149-5.pdf (5.07 Mo) Télécharger le fichier
Origine : Publication financée par une institution
Loading...

Dates et versions

hal-02137014 , version 1 (22-05-2019)

Identifiants

Citer

Clément Vic, Alberto C. Naveira Garabato, J. A. Mattias Green, Amy F. Waterhouse, Zhongxiang Zhao, et al.. Deep-ocean mixing driven by small-scale internal tides. Nature Communications, 2019, 10 (1), ⟨10.1038/s41467-019-10149-5⟩. ⟨hal-02137014⟩
516 Consultations
73 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More