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ABSTRACT 

 

Electrophoretic mobility, pyrene fluorescence, surface tension measurements, 

Transmission Electron Microscopy on resin-embedded samples, and X-ray microscopy 

were combined to characterize the aggregates formed from humic colloids and 

hydrolyzed-Fe species under various conditions of pH and mixing. We show that, at 

low coagulant concentration, the anionic humic network is reorganized upon association 

with cationic coagulant species to yield more compact structures. In particular, 

spheroids about 80 nm in size are evidenced by X-ray microscopy at pH 6 and 8 just 

below the optimal coagulant concentration. Such reorganization of humic colloids does 

not yield surface active species, and maintains negative functional groups on the outside 

of humic/hydrolyzed Fe complex. We also observe that the humic network remains 

unaffected by the association with coagulant species up to the restabilization 

concentration. 

Upon increasing the coagulant concentration, restructuration becomes limited : 

indeed, the aggregation of humic acid with hydrolyzed-Fe species can be ascribed to a 

competition between humic network reconformation rate and collision rate of 

destabilized colloids. A decrease in stirring favors the shrinkage of humic/hydrolyzed 

Fe complexes, which then yields a lower sediment volume. Elemental analyses also 

reveal that the iron coagulant species are poorly hydrolyzed in the destabilization range. 

This suggests that destabilization mechanisms such as sweep-flocculation or adsorption 

onto a hydroxyde precipitate are not relevant to our case. A similar 

neutralization/complexation destabilization accompanied by a restructuration of flexible 

humic network is then proposed to occur in the range of pHs investigated.  

 

 

Key words: Coagulation, humic substances, ferric chloride, X-ray microscopy, pyrene 

fluorescence. 
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INTRODUCTION 

 

Humic substances represent the dominant part of dissolved organic matter in 

freshwater supplies (Zumstein and Buffle, 1989). Their elimination upon drinking water 

treatment is mainly performed by coagulation with hydrolyzed metal species. 

Considerable attention has then been focused on this removal step as uncoagulated 

humic materials lead to severe problems in the following treatment stages. Indeed, 

membrane fouling, trihalomethanes formation during desinfection, or biological 

regrowth in the distribution network, have all been linked to the presence of residual 

humic substances in clarified water (e.g. Owen et al., 1995 ; Lin et al., 2000). Three 

main mechanisms are generally invoked to explain the removal of humic substances by 

coagulation: charge neutralization/complexation preferentially applies at acidic pH and 

finds experimental support from stoichiometric relationships between coagulant demand 

and dissolved organic matter concentration, and from suspension restabilization upon 

overdosing (e.g. Narkis and Rehbun, 1977). On the other hand, under conditions 

favoring metal hydroxide precipitation, physical ensmeshment and/or adsorption onto 

the freshly formed precipitate are assumed to play a major role in humic substances 

elimination (e.g. Bose and Reckow, 1998). 

None of these destabilization mechanisms explicitly refers to the nature of 

humic material. Humic substances are commonly described as heterogeneous 

compounds containing both a large proportion of oxygen-substituted functional groups 

(essentially carboxylic and phenolic) that make them hydrophilic (Ritchie and Perdue, 

2003), and seggregated aromatic and aliphatic moieties (Chien and Bleam, 1998) that 

give them surface active and hydrophobic binding properties (Chen and Schnitzer, 

1978; Engebretson and von Wandruszka, 1994). Direct flow-field flow fractionation 

investigations of natural freshwaters suggest that humic colloids are about 1-2 nm in 

diameter (Lyvén et al., 2003; Baalousha and Lead, 2007), which concurs with previous 

characterizations of extracted humic material using Transmission Electron Microscopy 

(TEM), Atomic Force Microscopy (AFM), and Small-Angle X-ray and Neutron 
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Scattering (Balnois et al., 1999; Wilkinson et al., 1999; Kawahigashi et al., 1995; 

Knöchel et al., 1997; Österberg et al., 1993). The size of humic substances is also 

known to depend on pH: a stretched configuration occurs at alkaline pH due to 

intramolecular electrostatic repulsions, whereas small humic aggregates can be formed 

below pH 5 (Lead et al., 2000; Plaschke et al. 1999). In addition, adsorption data and 

multivalent cations complexation experiments reveal changes in humic conformation 

upon interaction (Veermer et al. 1998; Wilkinson et al., 1999 ; Engebretson and von 

Wandruszka, 1998). 

Modeling of their charge characteristics implies that humic substances are soft 

and porous structures (Duval et al., 2005). However, the detailed organization of humic 

nanocolloids remains a matter of debate: they have long been regarded as linear or 

slightly branched polymers that can coil or adopt an extended conformation according 

to solution properties (Ghosh and Schnitzer, 1980; Swift, 1999). On the other hand, 

recent Diffusion Ordered Spectroscopy (DOSY) and Size Exclusion Chromatography 

(SEC) suggest that humic colloids are supramolecular associations of small 

heterogeneous molecules that can be disrupted in the presence of organic acids 

(Simpson 2002, Piccolo, 2001; Conte and Piccolo, 1999). 

Both concepts are consistent with a flexible humic structure. Yet, such an aspect 

is not taken into account in traditional coagulation mechanisms. As shown in recent 

electron energy loss spectroscopy and pyrene fluorescence experiments (Jung et al., 

2005b; Kazpard et al., 2006), conformational rearrangements can also be evidenced 

during the coagulation of negatively charged humic colloids with cationic hydrolyzed 

metal species. In this paper, we investigate the coagulation behavior of Nyong river 

humic acid with ferric chloride. Nyong river is located in the African tropical rainforest, 

which allows to document the removal by coagulation of humic substances from the 

strongly coloured surface waters encountered in this area (Olivié-Lauquet et al., 2000). 

We examine the interplay between humic reorganization rate and colloid/hydrolyzed Fe 

species collision rate by varying the agitation conditions, the humic aggregates being 
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characterized by pyrene fluorescence, electrophoretic mobility, TEM on resin 

embedded samples, and X-ray microscopy.  

 

MATERIALS AND METHODS 

 

Origin, extraction, and characterization of Nyong humic acid (NHA). The humic 

acid used in the present study was extracted from Nyong river sediment (Cameroon). 

The sampling site is located upstream Akomnyada drinking water treatment plant 

(SNEC Mbalmayo 3.51°N, 11.5°E) in the tropical rain forest area. The natural pH of 

Nyong river water is about 5.8, and Dissolved Organic Carbon (DOC) is in the 20 mg/L 

range (Viers et al., 1997; Olivié-Lauquet et al., 2000). About 20 kg of sediments were 

collected from the bedload superficial layer of Nyong river at the end of the dry season 

(september 2003). The sediments were dried at room temperature (30°C), and then 

sieved through a 2-mm screen. The separation and purification of humic acid fraction 

was based on Thurman and Malcom procedure (1981), adapted to yield the extract in a 

sodium form (Jung et al., 2005). Elemental analysis of NHA (Carlo Erba 1108 

autoanalyser) indicated contents of 49.6% in C, 4.3% in H, 3.5% in N, and 41.8% in O. 

Potentiometric titration (Jung et al., 2005) reveals a total titratable charge of 2.97 

meq/g.  

Infrared analysis (1 mg NHA mixed with 250 mg KBr) was carried out with a 

Bruker IFS 55 spectrometer in transmission mode (200 scans collected at 2 cm
-1

 

resolution in the 4000-400 cm
-1

 range). The main FTIR bands were assigned according 

to Baes and Bloom (1989). The spectrum (Fig. 1a) exhibits the main infrared bands 

usually reported for humic material and it closely resembles that of copropellic ooze 

from Mud Lake (Florida) described by Stevenson and Goh (1971). 

The {
1
H-

13
C} CP/MAS spectrum was obtained with a Bruker ASX 500 

instrument at 125.77 MHz, spinning at 10 kHz, with  a π/2 pulse of 8 s, contact times of 

1 ms, recycle delays of 5 s and around 14 000 transients ; line broadening procedure 

(100 Hz) was applied before Fourier transform, and the chemical shifts were quoted 
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relative to TMS. CPMAS 
13

C NMR spectra of humic substances are typically divided 

into four resonance ranges: alkyls (0-50 ppm), O-alkyls (50-110 ppm), aromatics (110-

160 ppm), and carbonyls (160-220 ppm) (e.g. Mahieu et al., 1999). Figure 1b shows 

that the NHA NMR spectrum is dominated by two well-resolved aliphatic peaks (27 

and 47 ppm). It also exhibits two resonances at 73 and 103 ppm that could indicate the 

presence of polysaccharides (Wilson et al. 1981). The aromatic region contains two 

significant resonances at 123 and 147 ppm, assigned to phenolic ring carbon and 

aromatic ring carbon, respectively. The major signal at 173 ppm is assigned to 

carboxylic carbon, whereas the two weak resonances at 200 and 217 ppm are likely due 

to ketonic carbons. Even though CPMAS NMR results are not quantitative, the 

proportions of aliphatic and aromatic carbons contained in NHA are quite similar to that 

found in many freshwater humic substances (Wilson et al., 1981; Malcom, 1990; Wong 

et al., 2002; Peuravuori, 2005). 

 

Preparation of reconstituted waters and aggregation procedure. Suspensions were 

obtained by dissolving 25 mg of NHA in 1 L of deionised water (Millipore-MilliQ, 18.5 

MΩ/cm), thus yielding a dissolved organic carbon of 10 mg/L. Sodium 

hydrogenocarbonate (NaHCO3 4 10
-3

 mol/L) was also added into the suspension to 

provide a carbonate alcalinity similar to that of natural river waters. Prior to coagulant 

injection, the pH of synthetic waters was adjusted to pH 6 or 8 with dropwise addition 

of 0.1 M HCl. The coagulant, a commercial ferric chloride kindly supplied by Groupe 

Arkema (France), corresponds to a 38%wt FeCl3 unhydrolyzed solution. 

Coagulation tests were conducted at 25°C in 1 L reactors (9 cm in diameter) 

fitted with 4 plexiglas baffles (1.2x15cm). Stirring was carried out with a rectangular 

paddle (1.5x5.5 cm) located at one-third of the beaker height from the bottom. Two 

mixing procedures yielding the same overall energy input to the coagulated suspension, 

were used : (i) a rapid mix period for 3 min at 250 rpm (mean velocity gradient G = 452 

s
-1

) followed by slow stirring at 60 rpm (G = 84 s
-1

) for 30 min, (ii) a continuous slow 

mixing at 60 rpm for 46 min. The coagulant was added under agitation as pure solution 
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using a micro-pipette (Eppendorf) at a point just below the free surface of the 

suspension. At the end of mixing, the coagulated suspension was allowed to settle in 

graduated Imhoff cones. 50 mL of supernatant were withdrawn with a syringe from 

about 25 mm below the free surface, at 30 min and 24 h settling. Residual turbidity 

(Ratio XR Turbidimeter Hach), sediment volume, pH (Meter Lab PHM 210 Tacussel), 

conductivity (CD 810 Tacussel) were monitored at both sampling times, whereas 

electrophoretic mobility and surface tension measurements, pyrene fluorescence 

emission, and both TEM and X-ray microscopy observations, were carried out on the 

24h settled suspensions. 

 

Characterization of NHA aggregates. Hydrophobic/hydrophilic properties of 

coagulated NHA were characterized by measuring surface tension, electrophoretic 

mobility, and the intensity ratio of the first/third band in pyrene fluorescence emission 

spectrum. 

The fluorescence emission spectra of pyrene were recorded at 25 ± 0.1 °C on a 

Fluorolog-3 spectrofluorometer (SPEX, Jobin Yvon), using 2 nm slits for the excitation 

and emission monochromators, 1 nm increment, and an integration time of 1 s. Pyrene 

(99% - Fluka) was first dissolved in ethanol (99.5% spectrophotometric grade - 

Aldrich) to prepare a 10
-3

 mol/L stock solution. Aliquots of 0.6 mL were then added to 

the NHA suspensions to yield a 6 10
-7

 mol/L pyrene concentration. The volumetric 

content of ethanol introduced in the samples is less than 0.6‰ and does not influence 

the solubility of pyrene in samples. Normal jar test procedures were then carried out. 

Prior to fluorescence measurements,  coagulated NHA-pyrene samples were 

homogeneized by gentle over-hand shaking. Pyrene excitation wavelength was set at 

332 nm and the emission was collected between 350 and 450 nm. The polarity sensitive 

ratio I1/I3 was calculated from the emission intensities at 372 nm (I1) and 383 nm (I3). 

The measurements were made in duplicate, and the corresponding average relative 

intensity ratio is presented. In order to compare the fluorescence intensities of samples 

and to avoid equipment baseline time drift, the fluorescence was normalized with a 0.16 
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mg/L fluorescein solution buffered at pH 10, using an excitation wavelength of 488 nm 

with emission recorded from 500 to 550 nm.  

Surface tension measurements were performed at 23±0.5°C using a KSV Sigma 

70 tensiometer equipped with a Noüy ring. Prior to each measurement, the Noüy ring 

was carefully cleaned and heated with a bunsen burner flame to avoid contamination 

from adsorbed NHA. A series of 10 measurements was carried out at each coagulant 

concentration, the average surface tension being calculated from Sigma 70 software. 

The standard error between  the measurements was within 2%. 

The electrophoretic mobility of unsettled aggregates was measured with a 

Zetaphoremeter III (Sephy, France) equipped with a CCD camera. Prior to the 

measurements, the supernatant of the settled suspensions was centrifuged at 2500 rpm 

for 10 minutes in a lab-centrifuge (Eppendorf 5804) to increase the particle 

concentration. The centrifugate was then re-suspended in 50 ml of original supernatant 

before being pumped into the electrophoretic cell. This procedure may induce a slight 

compaction of the floc structure. However, such a rearrangement occurs at a much 

larger scale than that associated with the diffuse double layer. The velocity of particles 

located at the stationary layer was directly computed from a video analysis obtained at 

fixed time intervals under an 80 mV applied voltage. 

 

Imaging of NHA aggregates Transmission Electron Microscopy (TEM) and X-ray 

Microscopy were used to image NHA coagulated structures. TEM was carried out with 

a Phillips CM 20 equipped with energy dispersive X-ray spectrometer, from ultrathin 

slices obtained from resin-embedded samples. Resin-embedding was carried out 

following a classical procedure (Lartiges et al., 2001) : coagulated samples were first 

chemically fixed with 2% osmium tetroxide for 1 h, excess fixative being removed by 

washing with centrifuged treated water. Stepwise acetone dehydration (5 min at 10, 20, 

40, and 60%, 15 min at 80%, 2x15 min at 95%, and 3x20 min at 100% acetone) was 

then conducted. Finally, acetone was exchanged with a graded series of epoxy resin 

monomers (Kit Embed 812, Euromedex), and the resin-impregnated samples were 
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polymerized in molds at 60°C for 12 h. Ultrathin sections (~ 1000 Å) of resin 

embedded samples were cut using an ultramicrotome and a diamond knife (Reichert 

OM U2), and placed on carbon-coated copper grids. 

X-ray microscopy (XRM) was performed at Bessy II using the transmission X-

ray microscope developed by the Institute for X-ray physics (University of Göttingen) 

(Wiesemann et al., 2000). An X-ray wavelength just above oxygen K-absorption edge 

( = 2.34 nm) was used. In that case, organic matter and iron hydrolyzed species show 

a much higher absorption than water, thus providing a natural contrast for the 

coagulated humic material in aqueous media. Using the Fresnel condenser and micro 

zone plate of the set-up, and  = 2.34 nm, the resolution attained with the X-ray 

microscope was about 20 nm. Microliters of coagulated sediment were placed between 

polymer membranes in an object chamber built for XRM (Guttmann et al., 1992). The 

sample thickness is then below a few microns which limits the absorption of X-rays by 

the water layer. Exposure times for obtaining an image are in the range of a few 

seconds. No radiation damage was observed in our samples. X-ray images were divided 

with the corresponding background image, and the grey level was then re-calibrated 

between 0 and 255. 

 

RESULTS AND DISCUSSION 

 

Destabilization of NHA with ferric chloride. As illustrated in figure 2, a similar 

coagulation behavior is observed at pH 6 and 8 for an initial mixing agitation of 250 

rpm. The residual turbidity increases at low iron dosages to reach a maximum, and then 

it steeply decreases with further coagulant addition (fig. 2a-b). The point where the 

extrapolated steep portion of the turbidity curve intersects the x-axis is chosen as the 

optimum coagulant concentration (OCC). Above OCC, the residual turbidity remains 

low until the restabilization of the suspension is induced by excess coagulant. On the 

other hand, the sediment volume rapidly builds up just before OCC as settleable 
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aggregates begin to form, it levels off in the destabilization domain, and it sharply 

diminishes around the restabilization concentration (RC). 

At both investigated pHs, the pH gradually decreases with iron addition from 

the initial suspension pH to a value close to 5, and it then drops to about pH 3.5 as 

ferric chloride hydrolysis exceeds the buffer capacity of the solution (fig. 2c-d). 

Conductivity measurements reveal three domains : at low coagulant concentrations, the 

conductivity slightly increases ; just before OCC, a stronger increase in conductivity is 

observed. From OCC, the conductivity re-increases with a lesser slope and it exhibits 

another sharp increase around the restabilisation concentration. The two successive 

strong increases in conductivity can be attributed respectively, to a release in sodium 

and calcium ions from NHA functional groups upon association with coagulant species 

(Jung et al., 2005b), and to the formation of soluble iron species at the restabilisation 

concentration (El Samrani et al., 2004). 

The jar-test results obtained at pH 8 are characterized by (i) an increase in OCC, 

(ii) a wider range of optimal dosing, and (iii) a higher sediment volume in the 

destabilization domain. Thus, optimal coagulant concentrations of 2.4 10
-4

 and 5.9 10
-4

 

mol/L are found at pH 6 and 8, respectively. This corresponds to Fe/C mass ratios of 

1.1 and 2.75 (i.e. Fe/C elemental ratios of 0.29 and 0.72) at pHs 6 and 8, respectively. 

Such values fall in the range usually reported in the literature for the aggregation of 

humic substances with iron-based coagulants (e.g. Lefebvre and Legube, 1990 ; Jung et 

al., 2005b). The higher coagulant demand and the larger destabilization domain at pH 8 

can be attributed to (i) an increased deprotonation of NHA functional groups, (ii) a 

change in humic conformation that makes more binding sites available for coagulant 

species, and (iii) a smaller charge of Fe-hydrolyzed Fe-species. Interestingly, even 

though the coagulation pH is not constant, the ratio of restabilization concentration to 

optimal dosage remains equal to 2.45 at both pHs. 

Several parameters such as number and size of coagulant species, conformation 

of humic colloids, and aggregate structure, may be involved in the variation of settled 

volume with pH. As the sediment volume is almost constant in the range of optimal 
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dosing, the number of coagulant species, and the difference in number of those between 

pH 6 and 8, can not explain the magnitude of settled volume. Furthermore, recent 

EXAFS investigations have shown that Fe-hydrolyzed species are poorly polymerized 

in presence of natural organic matter around OCC even at basic pH (Vilgé-Ritter et al., 

1999 ; El Samrani et al., 2004). Therefore, in our case, the size of coagulant species 

should not significantly influence the aggregate volume. The role played by humic 

conformation in determining the sediment volume is more obvious. Indeed, it has long 

been known that, at basic pH, the increased deprotonation of humic colloids, either 

polymeric or self-assembly, yields stretched or swelled structures with greater steric 

hindrance (e.g. Ghosh and Schnitzer, 1980). Such an effect may be enhanced by a 

change in aggregate structure as aggregates with lower fractal dimension were reported 

at basic pH in the case of NOM coagulated with ferric chloride (Vilgé-Ritter et al., 

1999). 

The effect of mixing conditions on the jar-tests carried out at pH 6 and 8 is 

shown in figure 3. The residual turbidity curves are almost superimposed at both pHs, 

which is in accordance with previous results indicating that agitation does not 

significantly influence coagulant demand (e.g. Lefebvre and Legube, 1990 and 

references herein). Nevertheless, a slightly higher restabilization concentration can be 

noted when the initial mixing intensity is increased. The settled volumes are also 

distinctly different in the range of optimal dosing with, surprisingly, a drastic decrease 

in sediment volume under low mixing intensity. In that case, restructuring into a more 

compact aggregate structure, that usually occurs at high mixing speed (e.g. Spicer et al., 

1998), can not be invoked to account for the formation of a smaller sediment volume. 

Instead, it can be explained by a reorganization of anionic humic colloids upon 

association with positively charged coagulant species, a decrease in collision rate 

allowing a more effective reconformation into denser aggregates, and hence a decrease 

in settled volume. Therefore, the size of the coagulated humic colloid would be a 

predominent factor in determining sediment volume. 
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Electrophoretic mobility, pyrene fluorescence, and surface activity of NHA 

coagulated suspensions. Figures 4a and 4b illustrate the influence of ferric chloride 

concentration on NHA aggregates electrophoretic mobility and I1/I3 pyrene 

fluorescence intensity ratio at pHs 6 and 8 (Initial mixing intensity of 250 rpm). At both 

pHs, the electrophoretic mobility of aggregates is negative up to the optimal dosage 

even though NHA coagulated well at OCC. Such behavior is consistent with a 

rearrangement of anionic humic colloids around positive coagulant species that 

maintains net negative charges on the outside of the humic/hydrolyzed-Fe complex. 

However, it could also result from the heteroaggregation of oppositely charged humics 

and hydrolyzed-Fe species without humic reorganization. At higher coagulant dosages, 

the electrophoretic mobility gradually increases and charge reversal is observed before 

the restabilization concentration at pH 6, and at RC at pH 8. As can be seen in figures 1 

and 2, the charge reversal of NHA aggregates induces a slight increase in sediment 

volume. 

The pyrene intensity ratio I1/I3 provides a polarity sensor that has been used to 

probe the micellar properties of humic acid systems (Engebretson and von Wandruszka, 

1994 ; 1998). Indeed, pyrene is much more soluble in apolar solvents than in water, and 

it migrates from the aqueous phase into hydrophobic microenvironments with 

remarkable changes in its fluorescence emission spectrum (Kalyanasundaram and 

Thomas, 1977). Thus, I1/I3 is about 1.9 in pure water, whereas it is much lower in 

apolar phases (e.g. I1/I3 ~ 0.6 in hexane). A similar pattern is obtained for the evolution 

of pyrene intensity ratio as a function of iron concentration at both pHs 6 and 8: at low 

coagulant dosages, I1/I3 decreases from an initial value slightly below 1.65, to a 

minimum of about 1.56 at pH 6, and of 1.45 at pH 8. It then sharply rises just before 

OCC to reach I1/I3 values slightly higher than those of the original NHA suspension. 

From OCC, the pyrene intensity ratio gradually diminishes until the restabilization 

concentration ; it then rapidly drops to more hydrophobic values with further increase in 

coagulant dosage. 
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The initial decrease in pyrene intensity ratio indicates the formation of a 

relatively hydrophobic microenvironment around the fluoroprobe. As both pyrene 

associated with coagulated NHA and pyrene remaining in water contribute to the 

recorded value of I1/I3, the solubilization within a more hydrophobic environment may 

be explained by (i) structural changes of humic colloid upon coagulation which enhance 

the hydrophobicity of pyrene sorption sites, and/or (ii) an increased partition of the 

fluoroprobe into these newly created hydrophobic regions. A reorganization of humic 

network is indeed expected with the elimination of humic negative charges by the 

cationic coagulant species : neutralization likely favors hydrophobic interactions, which 

may result in an overall shrinkage of the organic colloid with release of hydration water, 

and thus lead to the formation of hydrophobic microenvironments referred to as 

intramolecular humic pseudomicelles in previous reports (Engebretson and van 

Wandruszka, 1994 ; 1998). 

Further coagulant addition reverts the evolution of I1/I3, the most hydrophilic 

environment being observed at OCC. This phenomenon, which may appear at first as a 

demicellization process, can in fact be ascribed to the competition between intra-humic 

reorganization upon association with hydrolyzed-Fe species and inter-humic clustering, 

the reconformation of humic network being hindered within the aggregate. The 

influence of mixing conditions on pyrene intensity ratio at pH 6 supports such an 

interpretation (fig. 5b) : the minimum value in I1/I3 indicating the maximum shrinking 

of humic colloid, is shifted towards higher coagulant concentrations at low mixing 

intensity. Moreover, the pyrene intensity ratio in the optimal dosing range increases 

with agitation or collision rate which is consistent with a limited reconformation. 

However, at pH 8, the effect of mixing intensity on I1/I3 appears to be negligible (fig. 

5d) whereas a small decrease in sediment volume was noted at low agitation. Likewise, 

the electrophoretic mobility curves are almost superimposed for both mixing sequences, 

and do not reveal  any significant influence of mixing conditions (fig. 5a and 5c). 

The drop in pyrene intensity ratio at restabilization concentration is not 

straightforward to explain. On the one hand, the binding of an excess coagulant species 
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onto the humic network implies electrostatic repulsions and swelling of humic structure, 

thus providing access to supplementary hydrophobic binding sites of pyrene. On the 

other hand, above RC, the pH is lowered to 3.5 and the protonation of carboxylic 

functional groups may enhance the formation of hydrophobic microenvironments, and 

hence, the solubilization of pyrene fluroprobe. 

Humic substances are well-known surface-active compounds (e.g. Chen and 

Schnitzer, 1978). As shown in figure 6a, humic colloids extracted from Nyong river 

sediments significantly lower the surface tension  : the -NHA concentration plot 

presents an initial convex decrease of surface tension which is reminiscent of that 

typically observed for amphilic copolymers (e.g. Garnier and Laschewsky, 2006). A 

plateau at 64 mN/m is then obtained at pH 6 from a NHA concentration of 0.3 g/L, 

whereas surface tension decreases more continously at pH 8 to a  value slightly below 

60 mN/M at 1 g/L. Such values are comparable with those usually reported for humic 

substances (Chen and Schnitzer, 1978 ; Terashima et al., 2004). 

Upon coagulation, the surface tension of NHA suspensions remains almost 

constant at low coagulant dosages, it exibits a sharp increase just before OCC, and then 

a slower continuous increase to reach a similar value of 71.5 mN/m at both pHs 6 and 8 

in the restabilization domain (Fig. 6b). Therefore, even though pyrene fluorescence 

results indicated that the neutralization of NHA with hydrolyzed-Fe species induces a 

reorganization of humic network, such restructuring does not lead to the formation of 

surface active entities. Comparison with the conductivity vs iron concentration curve 

(fig. 2), reveals that the increase in surface tension can simply be related to the change 

in solution ionic strength with coagulant addition. 

 

TEM and X-ray microscopy observations of coagulated NHA. TEM 

examination of resin-embedded coagulated sediments reveals obvious changes in the 

organization of humic aggregates as a function of coagulant concentration (figure 7). At 

the onset of sediment formation ([Fe] = 2.3 10
-4

 mol/L – pH = 6 - Agitation sequence 

60/60), the coagulated NHA is characterized by cloudy structures containing dispersed 
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8-15 nm electron-dense areas. At optimal dosage, the humic aggregates become more 

granulous with electron-dense areas of slightly smaller size. Finally, just below the 

restabilization concentration ([Fe] = 4.56 10
-4

 mol/L), nanocolloids of about 3 nm in 

diameter and a few 30 nm long nanorods can be recognized within the coagulated 

sediment. A similar pattern with smaller electron-dense areas and larger nanorods, is 

obtained with a 250 rpm initial agitation (fig. 6d-f). 

At first sight, the TEM observations substantiate the pyrene fluorescence 

results : the electron-dense areas detected below and around OCC imply an increased 

compacity that can result from a reconformation of humic colloids upon binding of 

coagulant species. On the other hand, close to the restabilization concentration, the 

homogeneous and diffuse aspect of humic aggregates is consistent with an expanded 

structure that can be associated with intraparticle electrostatic repulsions. However, the 

3 nm colloids and the 30 nm nanorods also fell in the size range of ferric chloride 

hydrolysis products (e.g. Murphy et al., 1976; Combes et al., 1989). The 10 nm spot 

size used to record EDX spectra does not allow to discriminate the chemical 

composition of electron-dense areas and nanorods. Nevertheless, as osmium tetroxide 

reacts with carbon double bonds of organic colloids, the Fe/Os elemental ratio can be 

used to assess the relative compacity of humic aggregates as a function of mixing 

conditions. Table 1 shows that larger Fe/Os ratios, and hence lower aggregate densities, 

are calculated for the 250 rpm initial agitation, which is in agreement with the smaller 

electron-dense areas and higher sediment volume noted at this mixing speed. Therefore, 

the 3 nm colloids likely identify the original humic colloids, and the nanorods could 

correspond to chains of those 3 nm subunits. This also implies that, up to the 

restabilization concentration, the overall integrity of humic network is maintained 

during coagulation. 

Elemental microanalyses of humic aggregates also reveal that Fe/Cl elemental 

ratio changes with coagulant concentration and initial mixing speed (Table 1). EXAFS 

investigation of ferric chloride hydrolysis showed that Cl
-
 ions are clearly detected in 

the vicinity of Fe-hydrolyzed species, with Fe/Cl close to 1 for OH/Fe ratio equal to 2 
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(Combes et al., 1989; Bottero et al., 1994). As fully hydrolyzed ferric chloride yields 

the formation of -FeOOH akaganeite with a 12 %wt chloride content or Fe/Cl = 6.4 

(Post et al., 2003), Fe/Cl values between 1 and 2.3 indicate the presence of poorly 

polymerized Fe-species within the humic aggregates. This agrees with previous EXAFS 

and EELS experiments showing that iron hydrolysis is hindered to the oligomeric stage 

in the presence of natural organic matter (Vilgé-Ritter et al., 1999 ; Jung et al., 2005b). 

Furthermore, the influence of mixing conditions on Fe/Cl atomic ratio suggests that Fe-

hydrolysis is stopped once the coagulant species interact with the functional groups of 

humic colloids, a higher collision rate thus yielding a lower Fe/Cl value. 

Figure 8 compares the XRM images of (i) NHA coagulated at pH 2 with the 

addition of HCl 0.5 M, (ii) humic aggregates obtained at pH 6 and 8 with various 

coagulant concentrations (initial mixing speed of 250 rpm), (iii) a precipitate of ferric 

chloride at an initial pH of 8. Unlike TEM, X-ray microscopy provides images of 

colloidal particles directly in aqueous suspension, and thus avoids the potential artifacts 

caused by the numerous preparation steps associated with resin-embedding. It is then 

very significant that the aspect of coagulated NHA in XRM images follows a similar 

pattern as that inferred from electron micrographs as a function of coagulant 

concentration. At pH 6 and below OCC, well-delimited clusters and aggregates of 

polydisperse dark spheroids, 30 to 120 nm in diameter, can be observed (fig. 8b-c). 

Around OCC, a few aggregates of dark spheroids remain sporadically distributed within 

a slightly granulated humic network (fig. 8d), whereas at still higher dosages, the 

coagulated NHA forms a thick inhomogeneous and cloudy structure. On the other hand, 

at pH 8, the coagulated humic network seems both finer and denser below OCC (fig. 

8f), whereas larger and more regular spheroids appear scattered in a slightly granular 

matrix around optimal dosage (fig. 8g). Above OCC, the granulated texture of humic 

aggregates becomes finer with coagulant concentration (fig. 8g-h), not reaching the 

homogeneous aspect of ferric chloride precipitate (fig. 8j). No XRM images of iron 

coagulated NHA display the diffuse netlike structure obtained at pH 2 (fig. 8a). 
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Previous X-ray microscopy investigations of the interaction of humic substances 

with complexing cations or cationic detergents revealed similar features, although not in 

the sequence described above. A variety of netlike structures were observed with both 

soil and aquatic humic substances in presence of millimolar concentrations of Cu
2+

 or 

Fe
3+

 (Myneni et al., 1999 ; Thieme et al., 2002 ; Pranzas et al., 2003). Clusters of 

irregular spheroids, about 300 nm in size, were found by Myneni after adding 10
-3

 M 

Fe
3+

 to 100 mg/L fluvial fulvic acid at pH 4 (Myneni et al., 1999), whereas Thieme and 

Niemeyer (1998) obtained dispersed spheres in the 200-600 nm size range, full or 

hollow, upon coagulation of a soil humic acid with various concentrations of cationic 

detergents. Ring-shaped structures, 20 to 70 nm in size, were also described at the mica 

surface using atomic force microscopy in fluid tapping-mode (Maurice and Namjesnik-

Dejanovic, 1999 ; Plaschke et al., 1999). All these humic assemblies show two common 

characteristics : (i) their size is about two orders of magnitude larger than the 

elementary size of humic colloids, (ii) their shape, spheroid or toroid, suggests a 

minimization of surface energy. In our case, the dark spheroids are abundant just before 

OCC in a coagulant concentration range where I1/I3 values indicate a relatively 

hydrophobic environment of pyrene fluoroprobe. Therefore, such humic assemblies 

likely result from hydrophobic interactions between neutralized humic colloids that may 

partially merge upon association. 

 

CONCLUSION 

 

A schematic model can then be proposed for the aggregation of NHA with 

hydrolyzed Fe species (Fig. 9). As no consensus has been reached regarding the 

organization of humic substances, we simply assume that NHA can be depicted as a 

flexible low density network of hydrophobic and hydrophilic moieties. Such 

nanocolloids change conformation according to their ionization state, can be built either 

from amphiphilic polymers or assemblies of small molecules, and are then in 

accordance with previous models of the secondary structure of humic substances 
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(Ghosh and Schnitzer, 1980 ; Piccolo 2001 ; Duval et al., 2005). The formation of NHA 

aggregates is then controlled by the number of coagulant species and two dynamics 

aspects : (i) the reconformation of humic network, and (ii) the collision rate of 

destabilized particles. An overall shrinkage of anionic humic network is indeed 

expected upon binding of cationic coagulant species, which promotes the formation of 

intra- and inter-particle hydrophobic domains according to the extent of neutralization. 

This suggests that, in addition to coagulant species, hydrophobic moieties participate to 

floc build-up. The rearrangement of humic network is necessarily restricted by the 

attachment of supplementary destabilized organic colloids, and hence by an increase in 

mixing intensity. Therefore, the interplay between reconformation and collision rates 

determines the variations in sediment volume in the range of optimal dosing. 

The classical aggregation mechanisms proposed in the literature to explain the 

coagulation of humic substances include charge neutralization/precipitation at acid pH, 

and adsorption and/or sweep-flocculation in an hydroxide precipitate at alkaline pH. 

Our work suggests that a similar charge neutralization/complexation with poorly 

hydrolyzed-Fe species occurs at boths pHs. In that case, the increase in OCC would 

essentially result from an opening of the deprotononated humic network at alkaline pH, 

thus increasing the number of carboxylic groups available for aggregation. This work 

does not settle the issue regarding the secondary structure of humic substances. 

However, it should be noted that Fe-hydrolyzed species are known to strongly interact 

with NOM carboxylic groups, and that the humic network remains unaffected even in 

the overdosage range at acid pH with highly charged coagulant species. As most 

features of Nyong river humic acid are similar to freshwater humic substances, the 

aggregation model described above should be general. 
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FIGURE CAPTIONS 

 

Figure 1. (a): Fourier-Transformed infrared spectrum of NHA; peak assignment was 

carried out after Baes and Bloom, 1989. (b): 
13

C CP-MASS NMR spectrum of NHA. 
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Figure 2. Jar-tests results at pH 6 and 8 for the 250/60 agitation sequence. (a) and (b) 

residual turbidity (•) and sediment volume (o) versus iron (III) concentration. (c) and 

(d) final pH (•) and conductivity (o) versus iron (III) concentration. The arrows on the 

graphs indicate the optimal coagulant concentration (OCC) and the restabilization 

concentration (RC). 

 

Figure 3. Influence of mixing conditions on the evolution of residual turbidtiy and 

sediment volume versus iron (III) concentration at pH 6 (a-b) and pH 8 (c-d). (o) 60/60; 

(•) 250/60. 

 

Figure 4. Evolution as a function of iron (III) concentration of I1/I3 pyrene fluorescence 

intensity ratio (•) and electrophoretic mobility (o). (a) pH 6 and (b) pH 8. 

 

Figure 5. Influence of mixing conditions on the evolution of I1/I3 pyrene fluorescence 

intensity ratio and electrophoretic mobility versus iron (III) concentration. (a-b) pH 6 

and (c-d) pH 8. (•) 250/60 and (o) 60/60. 

 

Figure 6. (a) Variation of surface tension as a function of NHA concentration. (b) 

Surface activity of coagulated NHA versus iron (III) concentration (agitation sequence 

(250/60). (•) pH 6 and (o) pH 8. 

 

Figure 7. TEM micrographs of coagulated NHA at various iron (III) concentrations and 

at pH 6. (a-c) 60/60; (d-f) 250/60. (a) and (d) [Fe] = 2.3 10
-4

 mol/L; (b) and (e) [Fe] = 

2.38 10
-4

 mol/L; (c) and (f) [Fe] = 4.76 10
-4

 mol/L. The scale bar represents 50 nm. 

 

Figure 8. X-ray micrographs of (a-i) coagulated NHA and (j) iron (III) precipitate. (a) 

pH 2, [Fe] = 0 mol/L. (b-e) influence of iron (III) concentration at pH 6; (b) and (c) [Fe] 

= 2.02 10
-4

 mol/L; (d) [Fe] = 2.38 10
-4

 mol/L; (e) [Fe] = 2.74 10
-4

 mol/L. (f-i) influence 

of iron (III) concentration at pH 8; (f) [Fe] = 4.76 10
-4

 mol/L; (g) [Fe] = 5.86 mol/L; (h) 

[Fe] = 7.33 mol/L; (i) [Fe] = 8.8 10
-4

 mol/L. Agitation sequence 250/60. The scale bar 

represents 300 nm. 

 

Figure 9. Schematic illustration of NHA aggregation dynamics with hydrolyzed Fe 

coagulant species. 
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 Fe/Os Fe/Cl 
Initial agitation (rpm) 60 250 60 250 
[Fe] = 2.3 10

-4
 mol/L 11.23 11.2 1.18 0.97 

[Fe] = 2.7 10
-4

 mol/L 10.44 17.72 2.28 1.97 

[Fe] = 4.5 10
-4

 mol/L 24.4 30.94 1.9 2.0 

 

 

 

Table 1: Fe/Os and Fe/Cl elemental ratios. Each reported value is the average of 5 

EDXS analyses. 

 


