Filtering properties of wavelets for local background-error correlations

Abstract : Background-error covariances can be estimated from an ensemble of forecast differences. The finite size of the ensemble induces a sampling noise in the calculated statistics. It is shown formally that a wavelet diagonal approach amounts to locally averaging the correlations, and its ability to spatially filter this sampling noise is thus investigated experimentally. This is first studied in a simple analytical one-dimensional framework. The capacity of a wavelet diagonal approach to model the scale variations over the domain is illustrated. Moreover, the sampling noise appears to be better filtered than when only using a Schur filter, in particular for small ensembles. The filtering properties are then illustrated for an ensemble of Meteo-France Arpege forecasts. This is done both for the ‘time-averaged correlations', and for the ‘correlations of the day'. It is shown that the wavelets are able to extract some length-scale variations that are related to the meteorological situation.
Type de document :
Article dans une revue
Quarterly Journal of the Royal Meteorological Society, Wiley, 2007, 133 (623), pp.363-379. 〈10.1002/qj.33〉
Liste complète des métadonnées

Littérature citée [25 références]  Voir  Masquer  Télécharger

https://hal-meteofrance.archives-ouvertes.fr/meteo-00202094
Contributeur : Olivier Pannekoucke <>
Soumis le : vendredi 4 janvier 2008 - 11:17:06
Dernière modification le : mardi 29 mai 2018 - 12:50:49
Document(s) archivé(s) le : jeudi 27 septembre 2012 - 13:40:24

Fichier

paper.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Olivier Pannekoucke, Loïk Berre, Gérald Desroziers. Filtering properties of wavelets for local background-error correlations. Quarterly Journal of the Royal Meteorological Society, Wiley, 2007, 133 (623), pp.363-379. 〈10.1002/qj.33〉. 〈meteo-00202094〉

Partager

Métriques

Consultations de la notice

351

Téléchargements de fichiers

187