Background error correlation length-scale estimates and their sampling statistics

Abstract : This article presents different formulae to estimate correlation length-scales, and an evaluation of their qualities for practical diagnostic applications. In particular, two new and simple formulae are introduced, which only require the computation of correlation with a single point for a given direction. It is then shown in a 1D heterogeneous context that all formulations lead to similar realistic length-scale values, and that they represent geographical variations rather well. The estimation of length-scales within a finite ensemble is also studied. While a positive bias occurs when the ensemble size is too small, the standard deviation of the length-scale estimation is shown to be the main influence on the estimation error. The spatial structure of sampling noise is then diagnosed, and effects of spatial filtering techniques on the bias and standard deviation are illustrated. Finally, an ensemble of perturbed forecasts from a global NWP model is used, showing a real application example.
Type de document :
Article dans une revue
Quarterly Journal of the Royal Meteorological Society, Wiley, 2008, 134, pp.497-508. 〈10.1002/qj.212〉
Liste complète des métadonnées

Littérature citée [23 références]  Voir  Masquer  Télécharger

https://hal-meteofrance.archives-ouvertes.fr/meteo-00285507
Contributeur : Olivier Pannekoucke <>
Soumis le : jeudi 5 juin 2008 - 16:18:52
Dernière modification le : mardi 29 mai 2018 - 12:50:49
Document(s) archivé(s) le : vendredi 28 septembre 2012 - 15:31:03

Fichier

paper.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Olivier Pannekoucke, Loïk Berre, Gérald Desroziers. Background error correlation length-scale estimates and their sampling statistics. Quarterly Journal of the Royal Meteorological Society, Wiley, 2008, 134, pp.497-508. 〈10.1002/qj.212〉. 〈meteo-00285507〉

Partager

Métriques

Consultations de la notice

387

Téléchargements de fichiers

577