
HAL Id: meteo-00351269
https://meteofrance.hal.science/meteo-00351269

Submitted on 29 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Analysis of leaf area index in the ECMWF land surface
model and impact on latent heat and carbon fluxes:

Application to West Africa
Lionel Jarlan, Gianpaolo Balsamo, Sébastien Lafont, Anton Beljaars,

Jean-Christophe Calvet, Éric Mougin

To cite this version:
Lionel Jarlan, Gianpaolo Balsamo, Sébastien Lafont, Anton Beljaars, Jean-Christophe Calvet, et
al.. Analysis of leaf area index in the ECMWF land surface model and impact on latent heat and
carbon fluxes: Application to West Africa. Journal of Geophysical Research: Atmospheres, 2008, 113,
pp.D24117. �10.1029/2007JD009370�. �meteo-00351269�

https://meteofrance.hal.science/meteo-00351269
https://hal.archives-ouvertes.fr


Analysis of leaf area index in the ECMWF land surface model and

impact on latent heat and carbon fluxes: Application to West Africa

L. Jarlan,1,2 G. Balsamo,1 S. Lafont,1,3 A. Beljaars,1 J. C. Calvet,4 and E. Mougin5

Received 10 September 2007; revised 4 July 2008; accepted 25 August 2008; published 30 December 2008.

[1] A new version of the land surface model of the European Centre for Medium-Range
Weather Forecasts (Carbon-TESSEL, or CTESSEL) includes a vegetation growth
model. This study describes a leaf area index (LAI) data assimilation system (LDAS)
based on CTESSEL and satellite LAI for operational Net Ecosystem Exchange (NEE)
predictions. The LDAS is evaluated over West Africa. A preliminary experiment shows a
significant impact of the LAI on the CTESSEL NEE. The LAI is compared to two
satellite products: the predicted annual cycle is delayed over the Sahel and savannah, and
the LAI values differ from the satellite products. Preliminary to their use in the LDAS,
the LAI products are rescaled to the CTESSEL predictions. The LDAS simulations
are confronted to measurements of biomass and LAI for a site in Mali. The LAI analysis is
shown to improve the predicted biomass and the annual cycles of the water (latent
heat flux, or LE) and carbon (NEE) fluxes. Afterward, the LDAS is run over West Africa
with the Moderate-Resolution Imaging Spectroradiometer products (2001–2005). The
analysis of LAI shows a limited impact on LE, but it impacts strongly on NEE. Finally, the
CTESSEL NEE are compared to two other models’ outputs (simple biosphere (SIB)
and Carnegie-Ames-Stanford (CASA)). The order of magnitude of the three data
sets agrees well, and the shift in annual cycle of CTESSEL is reduced by the LDAS. It is
concluded that a LAI data assimilation system is essential for NEE prediction at
seasonal and interannual timescales, while a LAI satellite-based climatology may be
sufficient for accurate LE predictions.
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1. Introduction

[2] The land surface conditions are of primary impor-
tance for climate and weather prediction. Both root zone
soil moisture and vegetation conditions play a vital role in
the partitioning of water and energy budgets at the soil-
vegetation-atmosphere interface through evaporation pro-
cesses of the uppermost surface soil layer and plant
transpiration [Shukla and Mintz, 1982]. This partitioning,
in turn, partly controls the thermodynamic and soil moisture
content of the lower troposphere, and thus, climate. The
quality of short-term to seasonal weather predictions has
been shown to strongly depend on a good initialization of
the soil moisture [Beljaars and Viterbo, 1999]. Zeng et al.
[1999] and Philippon and Fontaine [2001] among others
found theoretical evidence of the influence of vegetation on

precipitation at interseasonal to interdecadal timescale in the
Sahel where the surface-atmosphere feedbacks are known to
be large. Apart from partitioning surface energy fluxes,
vegetation also governs the natural CO2 exchanges modu-
lating concentration of atmospheric CO2 at timescales
ranging from minutes to months [Tucker et al., 1986].
Within this context, the land surface models (LSMs) aiming
to define the boundary conditions for general circulation
models have been recently improved to include an interac-
tive vegetation dynamics [Arora, 2002]. Stated differently,
the vegetation physiological parameters of interest for the
simulation of hydrological processes (leaf area index (LAI)
and stomata resistance) are not prescribed and kept constant
anymore but evolve interactively with environmental con-
ditions thanks to biophysically based models of vegetation
growth and photosynthesis. This approach, although tend-
ing toward a more realistic representation of the land surface
processes and their interaction, increases the number of
uncertain parameters of LSMs and thus, the uncertainties
of their simulations. Reducing these uncertainties by com-
bining, optimally, model prediction with observations is the
objective of data assimilation (DA).
[3] Land surface DA has developed supped on the

advances introduced by the Numerical Weather Prediction
community, a major application being the operational pro-
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duction of weather forecast [Bennett, 2002]. Application to
land surface has received considerable attention within the
past few years but most of the studies focused on the
improvement of the soil moisture initialization regarding
the role of the soil water stock on the quality of the weather
forecasts [Walker and Houser, 2001]. Drush [2007], for
instance, shows that the analysis of the predicted root zone
from surface soil moisture products derived from satellite
observations influences the local weather parameters in the
European Center for Medium-Range Weather Forecasts
(ECMWF) system. Previous attempts to assimilate satellite-
derived vegetation characteristics mainly concerned histori-
cal reconstruction. Knorr and Lakshmi [2001] shows a better
vegetation cover prediction through the identification of
uncertain parameters of the BETHY model thanks to the
data assimilation of the fraction of photosynthetically active
radiation (fAPAR) derived from the AVHRR sensor. Rayner
et al. [2005] improved this system to reconstruct two decades
of terrestrial carbon fluxes thanks to the assimilation of
fAPAR and atmospheric CO2 concentrations. Only little
attention has been paid to the improvement of the vegetation
characteristics prediction within an operational context apart
from the work of Gu et al. [2006] who developed an optimal
interpolation scheme in the Canadian weather forecast sys-
tem to provide with LAI at the global scale from the
Moderate-Resolution Imaging Spectroradiometer (MODIS)
observations. Nevertheless, this last work is based on pure
data and does not include a dynamical vegetation model able
to simulate carbon fluxes.
[4] Estimation of vegetation characteristics (biomass,

LAI) was one of the first quantitative application of remote
sensing through empirical relationships established between
vegetation indices such as the Normalized Difference Veg-
etation Index (NDVI) acquired by the Advanced Very High
Resolution Radiometer (AVHRR) sensor and ground meas-
urements [e.g., Tucker et al., 1985]. Although strong po-
tentialities were highlighted, these empirical relationships
depend on the local conditions of the region where they
were developed (soil background, vegetation structure).
Furthermore, these relationships do not take into account
the effects of water and nutrients limitations on vegetation
functioning [Prince, 1991; Lo Seen et al., 1995]. The use of
radiative transfer models, simulating the physics of the
interaction between the electromagnetic waves and the
surface components, associated to inversion methods should
be theoretically better suited to retrieve a quantitative
information on vegetation (LAI, aboveground biomass)
from NDVI observations [e.g., Myneni et al., 1997; Kimes
et al., 2000]. This approach has been chosen by the MODIS
team to extract LAI from measured reflectances [Tian et al.,
2000].
[5] The objective of this study is twofold: it aims to (1)

demonstrate the interest of LAI data assimilation in order to
simulate carbon fluxes and (2) present a LAI data assimi-
lation system for real time prediction of carbon fluxes. The
system is based on the LSM of ECMWF named TESSEL
[Van den Hurk et al., 2000], recently modified to include an
interactive vegetation (hereinafter called CTESSEL for
Carbon-TESSEL) [Lafont et al., 2007] constrained by
satellite-derived LAI products. The data, the model and
the data assimilation method are described in the second
section. The third section demonstrates the impact of LAI

on the simulated carbon fluxes and a comparison between
the CTESSEL open loop (without DA) and the satellite-
derived LAI products is carried out. The results of the LAI
data assimilation system over an experimental site located in
Mali and at the scale of West Africa are described and
discussed in the fourth section. Finally, conclusions and
perspectives are drawn.

2. Materials and Methods

2.1. Carbon-TESSEL (CTESSEL) Model

[6] The TESSEL model is the land surface model of the
ECMWF developed by Van den Hurk et al. [2000]. It is
designed to describe the exchanges of heat and water
between the low-level atmosphere, the vegetation and the
soil within atmospheric models. Each grid box can be
composed of up to 8 tiles: bare soil, high vegetation, low
vegetation, high vegetation with snow beneath, snow on
low vegetation, interception layer, sea ice, open water.
[7] TESSEL has been coupled with the A-gs model

[Jacobs, 1994] that described the control of the latent heat
fluxes by the plant and described in a coupled manner the
water and carbon cycle. The photosynthesis module A-gs
calculates the net CO2 assimilation from which the biomass
and the LAI can be diagnosed. The coupling has been
performed by Lafont et al. [2007] and Voogt et al. [2006]
based on the land surface model ISBA-A-gs [Calvet et al.,
1998].
[8] The diagnostic of LAI is based on biomass evolution

due to photosynthetic activity. The growth module simu-
lates growth and mortality of the vegetation. The growth
of active biomass B (in g/m2) is based on the accumulated
net CO2 assimilation over the previous day An,day (see
Appendix A for details), and the LAI is obtained from the
biomass following

LAI ¼ B

aB

aB ¼ 1

SLA
¼ 1

eNL þ f

SLA is the specific leaf area in m2/g of active biomass; e and f
are called plasticity parameters and are dependent on
vegetation type and NL is the nitrogen contents of leaves,
also dependent on vegetation type. The coupled TESSEL-A-
gs is named hereinafter CTESSEL for Carbon-TESSEL. The
main equations of the model are described in Appendix A.

2.2. Data Assimilation Approach: A Simplified
Two-Dimensional Variational

[9] Variational methods adjust the model simulations to
match the observations available within the assimilation
window (at observations times) by minimizing a cost
function J, with respect to a background information xb.
The general form of J is given by

J xð Þ ¼ x� xb
� �T B�1

2
x� xb
� �

þ y� H xð Þð ÞT R
�1

2
y� H xð Þð Þ

¼ Jb xð Þ þ J0 xð Þ: ð1Þ
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The cost function has two terms: the background term Jb (x)
which measures the distance between the state vector x and
the a priori state xb (values of the analyzed variable at the
beginning of the assimilation window) weighted by the
background error matrix B, and the observation term J0 (x)
which accounts for the distance between the vector of
observations during the assimilation window, y, and the
simulations weighted by the observation error matrix R. The
projection of the state vector in the observation space is
done through the observation operator H( ). The minimum
of the cost function is given by the classical formulation of
the best linear unbiased estimate (with the hypothesis that
errors follow a normal distribution and that the linearity
hypothesis is fulfilled):

xa ¼ xb þK y� H xb
� �� �

; ð2Þ

where K is called the gain and is calculated as follows:

K ¼ BHT HBHT þ R
� ��1

: ð3Þ

The simplified two-dimensional variational (2DVAR) is an
assimilation method developed by Balsamo et al. [2004].
The main advantage of the method is to avoid the
development of adjoint and linear tangent models to
minimize J. It assumes a quasilinear problem close to the
background state xb by approximating H( ) by a one-side
finite difference. An additional forecast run with perturbed
initial condition is required for each state variable to be
analyzed, in order to estimate the linearized observation
operator H. If we call this two run RUN1 and RUN2, it can
be written as

H ¼
H xbRUN1
� �

� H xbRUN2
� �

xbRUN1 � xbRUN2
:

[10] As such, the simplified 2DVAR is close to an
Extended Kalman Filter from which the propagation of
the model error matrix is neglected considering a constant
B matrix.
[11] The method was initially designed to analyze the root

zone soil moisture using 2-m air temperature and humidity
observations. It has been adapted by Muñoz Sabater et al.
[2007] to analyze root zone soil moisture from surface soil
moisture observations and to the analysis of both above-
ground biomass and root zone soil moisture by Muñoz
Sabater et al. [2008]. The simplified 2DVAR has been also
applied on the SMOSREX data set (Toulouse, France) using
point-scale ground measurements. The method is applied
here to the analysis of LAI from satellite-derived products
over West Africa. The state vectors x and y are respectively
the predicted and of the observed LAI at the grid point
scale. Analyzing the LAI in CTESSEL is equivalent to the
analysis aboveground active biomass (as the ratio between
the active aboveground biomass and LAI is constant). The
2DVAR is applied grid point by grid point.
[12] Therefore, B is diagonal. Finally, the increments

K(y�H(xb)) are distributed to the low and high vegeta-
tion LAI thanks to their cover fraction Flow and Fhigh,
respectively.

2.3. West Africa Region

[13] West Africa gets most of its annual rainfall during the
boreal summer months from June to September. This rainy
season is associated with the seasonal reversal of the winds
in the lowest level of the atmosphere which is called the
monsoon. In winter, the wind blows from the cool continent
to the warm ocean. Following the sun apparent movement
in the course of the year, the continent warms faster than the
ocean. This thermal contrast drives the surface pressure
contrast between the ocean (high pressure) and the continent
(low pressure) and the set up of the monsoon circulation.
The resulting precipitation distribution is characterized by a
strong gradient of rainfall amount from north to south and
the duration of the wet season range from 1 to 2 months to
the border between the Sahara and the Sahel to regularly
distributed rainfall events along the year to the south. The
annual amount is highly erratic with a higher interannual
variability to the north of the window. This climate is locally
modulated by the topography (Cameroon mountains, the
Adrars to the north). The rainfall gradient (annual amount
and length of the wet season) from north to south is
associated with a gradient of vegetation (types and fraction
cover). Many detailed ecological classification exists for the
definition of the bioclimatic zone of West Africa. In this
study, the West African is simply subdivided into four
bioclimatic zones classified by latitude. These correspond
roughly to annual rainfall (PP in mm/a) [Le Houérou, 1989]:
PP < 150 for the Sahara Desert to the north; 150 < PP < 600
for the African Sahel, which constitutes the transition be-
tween the Sahara and the Sudanian savannah (600 < PP <
1500), and PP > 1500 for the Guinean forest to the south.
The Sahel is mostly covered by dry savannahs composed
of open annual herbaceous vegetation and of a sparse trees
and shrubs layer. The Sudanian region is covered by
savannah and dry woodlands. Rain forests are concentrated
to the south of the window over the Guinean region.
[14] Our study window extends from �5�N to 20�N and

from �20�E to 30�W (Figure 1). In addition, three sub-
windows located in the Sahelian, in the Sudanian and in the
Guinean bioclimatic zones, have been defined for sake of
clarity of the results presentation.

2.4. Field Data

[15] In order to evaluate our system against ground
observations, the Agoufou (15.3�N, 1.3�W) study site has
been selected. It is located within the African Monsoon
Multidisciplinary Analysis (AMMA) mesoscale site
(14.5�–17.5�N, 1�–2�W) in the Gourma region in Mali
(Figure 1). The Gourma region is located entirely within the
Sahel bioclimatic zone and extends to the South of the
Niger River between Timbuctu and Gao down to the border
with Burkina-Faso. This is mainly a pastoral region
enclosed by the annual average 500 and 150 mm isohyets.
The rain distribution is strictly mono-modal with rainfall
starting in June and ending in September with a maximum
in August. The rainy season is then followed by a long dry
season characterized by the absence of green vegetation
apart from some scattered trees and shrubs. Rangeland
vegetation is composed of an herbaceous layer and a sparse
woody plant population. Annual herbs germinate after the
first rains, in June or July, and unless the plants wilt before
maturity owing to a lack of rainfall, the senescence coin-
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cides approximately with the end of the rainy season. The
Agoufou site (1 � 1 km2) is a typical Sahelian landscape
characterized by gently undulating sand dunes. The total
tree and shrub cover is about 4.5%, whereas the grass cover
may vary from 0 to about 60% depending on soil moisture
availability. The soil is coarse grained or sandy (>90%).
[16] For the 2005 wet season, the annual rainfall total

reached 410 mm which can be considered as a relatively wet
year (the long-term average being 370 mm). Ground meas-
urements of the vegetation consist in an estimate of the time
variation of LAI and aboveground biomass from trees and
grasses using hemispherical photographs [Weiss et al.,
2004] and destructive sampling, respectively. For the grass
layer, a 1-km transect has been defined in the east-west
direction where measurements are performed every 10 m,
resulting in 100 pictures. Concerning aboveground herba-
ceous biomass, 12 samples are used. The large quantity of
data is sufficient to capture the spatial variability of the
grass layer. The computed mean LAI is assumed to be
representative at the 1 km2 scale. The estimated resulting
precision in terms of LAI is 0.23 m2 m�2 (at 1 standard
deviation). Further details on the experimental protocol are
detailed by Hiernaux [1984]. In 2005, the growth of the
grass layer started early in June and reached a maximum
LAI of 1.8 m2/m2 and 2100 kg of dry matter/hectare by the
end of August. In contrast, the LAI of trees estimated from
pictures taken of isolated individual stands remains at
values lower than 0.2 throughout the year.

2.5. Satellite-Derived Leaf Area Index (LAI)

[17] LAI defines an important structural property of a plant
canopy as the one sided leaf area per unit ground area. Two
LAI products are evaluated and compared to CTESSEL
within this study. The first data set, derived from the
observations of the VEGETATION instrument, is named
CYCLOPES (satellite products for change detection and
carbon cycle assessment at the regional and global scales)
[Weiss et al., 2007]. The second one is the MODIS LAI [Tian
et al., 2000].
[18] The CYCLOPES products are derived from data

acquired by the VEGETATION sensor. The VEGETATION
instrument on board SPOT4 (launched on April 1998)
followed by VEGETATION2 on board SPOT5 (since
February 2003) provide with a measure of land surface
reflectance in the visible and near-infrared domain contin-
uously. The sensor offers a daily global coverage with a
spatial resolution of 1 km2. Reflectance measurements are
performed within four spectral bands. Further details on the
instrument characteristics can be found in the work of
Duchemin et al. [2002]. The LAI products are processed by
the GEOLAND Core Service Products for the years 1998
to 2003. The version 3 of the product is used in this
demonstrational system. Version 3 algorithm used recali-
brated and atmospheric corrected reflectances. The LAI is
derived from fCover using the semiempirical approach
of Roujean and Lacaze [2002]. Further details can be
found in the algorithm description [Lacaze, 2004] (available

Figure 1. The West African windows (black line). The three subregions used for the evaluation of the
satellite-derived data and the Carbon-TESSEL (CTESSEL) model are represented by dashed lines: Sahel
(12�–17�N), savannah (6�–12�N), and forest (�4�–4�N). The AMMA supersite (near Agoufou village)
located in the Gourma region of Mali is superimposed.
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at http://postel.mediasfrance.org/IMG/pdf/CYCL_ATBD-
DirectionalNormalisation_I2.0.pdf) and in the work of Baret
et al. [2008].
[19] The MODIS instrument is operating on both the

Terra and Aqua spacecraft. It has a viewing swath width
of 2330 km and views the entire surface of the Earth every
1–2 days. Its detectors measure 36 spectral bands between
0.405 and 14.385 mm, and it acquires data at three spatial
resolutions: 250 m, 500 m, and 1000 m. The MOD15 LAI is
a 1-km global data product updated once every 8 days
derived from the MODIS sensor on board TERRA. The
MODIS LAI Level 4 algorithms were developed jointly by
personnel at Boston University and the University of
Montana SCF and NASA GSFC. The algorithm consists
of a main procedure based on the inversion of a 3-D
radiative transfer model thanks to a look-up table. This
algorithm exploits the spectral information content of
MODIS surface reflectances at up to seven spectral bands.
Should this main algorithm fail, a backup algorithm is
triggered to estimate LAI and FPAR empirical relationships
from vegetation indices. The algorithm uses a land cover
classification that is compatible with the radiative transfer
model used in their derivation. The LAI products, in the
collection 4 version, are available from 2001 to present.

2.6. Global Net Ecosystem Exchange Data Sets:
SIB and CASA

[20] Two global NEE data sets are used for the evaluation
of the CTESSEL predictions. The CASA fluxes [Randerson
et al., 1997] are based on the Monteith approach: the
primary production is the product of the fraction of
absorbed radiation (estimated from AVHRR NDVI), the
incoming radiation, and an efficiency coefficient. In this
simulation the meteorological drivers are based on a clima-
tology. This CASA data set is currently used as boundary
condition by the atmospheric transport model at ECMWF
and is expected to be replaced by the CTESSEL fluxes. The
SiB 3.0 fluxes [Denning et al., 1996] have been computed
with forcing from NCEP2 meteorology data. SiB calculates
surface fluxes of sensible and latent heat, radiation, mois-
ture, CO2, and momentum for vegetated land points. The
phenological properties (LAI, vegetation cover) of the
vegetation are derived from the GIMMS NDVI data sets
[Tucker et al., 2005].

3. Implementation of the LAI Data Assimilation
System

3.1. Climate, Soils, and Vegetation Data

[21] The climate data are provided by the AMMA Land
Surface Model Intercomparison Project (see http://
www.cnrm.meteo.fr/amma-moana/amma_surf/almip/
index.html). The data consists in standard meteorological
variables provided at a 0.5 degree resolution at a 3-hour
time step over a West Africa window from 2001 to 2005.
This corresponds to a 101� 51 grid which uses a cylindrical
equidistant projection. This first forcing data set, named
hereinafter ‘‘FORCING1,’’ is based purely on numerical
weather prediction (NWP) forecast model output diagnostics
(from ECMWF). Additionally, a second forcing data sets is
available for years 2004 and 2005 (hereinafter referred to as
‘‘FORCING2’’). FORCING2 is based on the merging of

FORCING1 and remote sensing-based products. The
downwelling longwave and shortwave radiative fluxes
for 2004 are from the Ocean and Sea Ice Satellite Appli-
cation Facility and the precipitation is from Estimation of
Precipitation by Satellite (EPSAT) product. In 2005, the
downwelling radiative fluxes are from LAND Satellite
Application Facility. Figure 2 displays the Hovmöller
diagram of cumulative 8-day rainfall for FORCING1
(Figure 2a) and FORCING2 (Figure 2b) over land. Both
forcings are consistent with our knowledge of the West
African rainfall regime. The north-south gradient of annual
amount and length of the wet season are well depicted
together with the bimodal regime around the equator [Leroux,
1972]. The use of the MSG precipitation products for
FORCING2 increases the rainfall amounts over the northern
Sahel (above 12�N) during summer. The FORCING2may be
considered as improved with regards to the pure ECMWF
forecast as Andersson et al. [2007] show a dry bias of the
ECMWF rainfall forecast over Sahel.
[22] At the scale of the West Africa, the ECOCLIMAP

database is used to fill the CTESSEL input parameters. The
ECOCLIMAP data set have been designed to provide a
complete set of high-resolution surface parameters for land
surface models. It is fully described by Masson et al.
[2003]. The data set is based on a combination of three
products: climate maps, land cover map, and 1 year of
AVHRR NDVI data. A classification process per continent
is used to assign a homogeneous ecosystem type (214 in
total) to each 1-km pixel. All the pixels belonging to a given
type have a common land cover. Within this study, the 1-km
(214 ecosystem types) ecosystem map is aggregated to the
resolution of the meteorological forcing (0.5�) and to a
limited number of vegetation types. ECOCLIMAP has
been adapted to obtain a seven-type vegetation map: three
high-vegetation types (DECIDUOUS, CONIFEROUS,
EVERGREEN) and four low-vegetation types (C3 GRASS,
C4 GRASS, C3 CROPS, and C4 CROPS). Finally, each grid
point can be composed of two kinds of vegetation type (low
vegetation and high vegetation) with associated fraction
cover Flow and Fhigh, respectively.
[23] The ECOCLIMAP data set provides a number of

parameters for SVAT models, including albedo, minimum
stomatal resistance, roughness lengths and fraction of soil
cover. The photosynthesis parameters of the A-gs module
(gc, Na, e, f, etc.; see Appendix A) are taken from Gibelin et
al. [2006] who describe the implementation at the global
scale of ISBA-A-gs and validate the global simulation from
satellite observations. In addition, ECOCLIMAP provides
with a climatology of monthly Leaf Area Index that can be
used to forced the LAI in CTESSEL by shunting the growth
module. The ECOCLIMAP LAI is computed by linearly
mapping the minimum NDVI and the maximum NDVI of
the AVHRR data during the season 1992–1993 to the
minimum LAI and the maximum LAI per ecosystem
gathered from the literature. Further details are given by
Masson et al. [2003].

3.2. 2DVAR Setup

3.2.1. Background and Observation Errors
[24] The two different available forcing data sets are used

to evaluate the diagonal terms of the background error
covariance matrix B. CTESSEL with the diagnosed LAI
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is run with FORCING1 and FORCING2 for the years 2004
and 2005. These two experiments are named EXP1_CT and
EXP2_CT, respectively. The average annual cycle of the
LAI differences between the two experiments are plotted at
Figure 3 as Hovmöller diagram.

[25] The analysis of Figure 3 can give us indication of the
background error. The differences in terms of precipitation
between the two forcings are located between 5� and 15�N
(Figure 2). Therefore, we focus on this region where the
LAI differences are obviously the larger (Figure 3). The

Figure 2. Eight-day rainfall Hovmöller diagram for (a) FORCING1, averaged over 2001–2005, and
(b) FORCING2, averaged over 2004–2005, over land.

Figure 3. Average annual cycles of the differences between EXP1_CT and EXP2_CT (see text) for leaf
area index (LAI) over 2004–2005: (a) absolute differences (m2/m2) and (b) relative differences (%).
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lower precipitation of FORCING1 lead to lower simulated
EXP1_CT LAI than for the EXP2_CT experiment. In
addition, these LAI differences are mainly associated to
the growth phase of the vegetation during July, August and
September. During the first half of the year, EXP1_CT LAI
is higher than EXP2_CT LAI. This may be attributed to the
later rainfall events of FORCING1 than FORCING2 that
keep quite high LAI until late in the winter. The absolute
and relative differences between the two experiments range
from �0.9 to +1.2 m2/m2 and �29 to +27%, respectively.
From these elements, the background error is set semi-
empirically to 20% of forecasted LAI with low and high
bounds at 0.2 and 1.2 m2/m2 over the whole domain of
study. Nevertheless, the use of this rather empirical and
spatially homogeneous model errors statistics is a first
approximation and better estimations, variable in space

and time, should be considered in the future. The analysis
ensemble method [Kucukkaraca and Fisher, 2006] which is
based on an ensemble of forecasts seems a promising
technique.
[26] The satellite-derived LAI uncertainty proceeds from

different sources (atmospheric and directional effects badly
corrected on the reflectance used in the inversion process,
inversion errors, spatial representativity, etc.). Therefore, the
errors of satellite-derived LAI are difficult to estimate and
ecosystem-dependent. Within this study, we compute the
average time series of MODIS LAI over the ‘‘forest’’
window (Figure 1). Assuming this is a stable target, we
apply the ergodicity principle and fix the observations errors
to two standard deviation of this time series (i.e., about
1 m2/m2). Finally, errors are assumed to be uncorrelated
between two 8- to 10-day satellite acquisitions.
3.2.2. Linearity Test and Choice of the Perturbation
[27] The linear approximation used to numerically com-

pute the observation operator has to be evaluated. In order
to test the linear hypothesis, an ensemble of 10 perturba-
tions from 0.01 to 1.8 m2/m2 is computed and the observa-
tion operator is calculated for all the grid points over land.
[28] Apart from numerical errors for small perturbations,

the results show that the sensitivity of the calculated H does
not depend on the size of the perturbation above a threshold
(around 0.4 m2/m2). The observation operator is plotted
against the size of the perturbation for one grid point at
Figure 4a but similar conclusion are drawn for other points.
The perturbation of LAI is taken equal to 0.4 m2/m2.
3.2.3. Evaluation of the Analysis Convergence
[29] The convergence of the assimilation system is eval-

uated using twin experiments. A reference run initialized
with the January LAI from ECOCLIMAP is used to
produce a set of LAI simulated ‘‘observations’’ that mimics
the satellite temporal repetitivity (10 days). The initial
conditions are then modified such as LAIlow = LAIhigh =
3.0 over the window. A free run (without LAI assimilation)
and a run with the analysis of LAI using the artificial
observations are computed. Figure 4b and c shows the
RMSE between these two runs and the reference run for
the high- and the low-vegetation tile, respectively. The
results show a good convergence of the data assimilation
approach after four cycles (40 days) for both high- and low-
vegetation types. The free run also converges toward the
reference run. As the forcing used is the same, both runs
tend toward the same equilibrium. Nevertheless, the con-
vergence is much slower for the free run and it still does not
fit the control run after 3 months of integration.
3.2.4. Length of the Assimilation Window
[30] At ECMWF, the land data assimilation system will

include soil moisture and LAI analysis. Regarding the
temporal scale of variability of soil moisture, the shorter
the window, the better. Calvet [2000] and Muñoz Sabater et
al. [2007] have shown the good performance of a 10-day
assimilation windows for soil moisture data assimilation.
Concerning LAI, the variability is much smoother and
several tests have been done by extending the window
length up to 50 days (not shown). The results in terms of
simulated NEE and LE are not very sensitive to the window
length. Finally, the length of the assimilation window is the
same as the temporal repetitivity of the satellite-derived

Figure 4. (a) Test of the linear hypothesis for the
simplified 2DVAR method on one point. Apart from
numerical errors due to low perturbations, the system is
very linear for perturbations chosen above 0.4 m2/m2; (b, c)
Convergence test (absolute difference between the open
loop (circles) and the analysis (stars)) and the control run for
the low- and high-vegetation tiles, respectively. The system
converges in about 1 month for the analysis, whereas it
takes a longer time for the open loop (without LAI
assimilation).

D24117 JARLAN ET AL.: LAI AND THE ECMWF LAND SURFACE MODEL

7 of 22

D24117



products (8 days for MODIS and 10 days for CYCLOPES),
thus including one observation per window.

4. Preliminary Experiments

[31] In this part, we intend to demonstrate the interest of
analyzing the Leaf Area Index in the CTESSEL model by
quantifying the impact of variations of LAI on the simulated
LE and NEE. Second and as a preliminary step toward data
assimilation, the free runs of the CTESSEL model (without
DA) are compared to the satellite-derived LAI.

4.1. Impact of the LAI on LE and NEE Predictions

[32] In this part, we take benefit of the two forcings to
discriminate the impact of the forcing from the impact of the
LAI on the NEE and LE. The FORCING2 is characterized
by a higher rainfall annual amount than FORCING1,
particularly over the northern part of the window (see
Figure 2). We will concentrate on a large region covering
southern Sahel and northern savannah (between 8�N and
13�N). The CTESSEL model is run for the overlapping
period of the two forcing (years 2004 and 2005) with
FORCING1 and FORCING2 and with a diagnosed LAI.
These two experiments, named EXP1_CT and EXP2_CT,
are similar to those used above to evaluate the background
error. In addition, two other runs are computed where the
LAI is not diagnose anymore but taken from a climatology
(ECOCLIMAP) [Masson et al., 2003] and is equal for the
two runs. These two additional experiments are named

EXP1_EC and EXP2_EC, respectively. The average annual
cycles over years 2004 and 2005 of the differences between
the EXP2_EC and EXP1_EC (same LAI but different
forcing) in terms of rainfall, NEE and LE are calculated.
Likewise, the differences between the EXP1_CT and
EXP1_EC (same forcing but different LAI) in terms of
LAI, NEE and LE are calculated. The results are normalized
with respect to the so-called control run EXP1_EC.
Figure 5a shows the normalized differences (in percent)
between EXP2_EC and EXP1_EC averaged from 8�N to
13�N from June to October which corresponds to the wet
season (where the differences between the two forcings are
the most important). Likewise, Figure 5b shows the nor-
malized differences (in percent) between EXP1_CT and
EXP1_EC. Figure 5c shows the EXP1_EC results (averaged
from 8�N to 13�N) in terms of LAI, daily NEE, daily LE
and 8-day rainfall. All over the paper, the convention for
fluxes is positive upward. Nevertheless, for sake of clarity
of Figure 5c, LE (W/m�2) has been multiplied by �1 and
NEE fluxes (mmol CO2 m

�2 s�1) by +30 to match the scale
of LE fluxes on the right axe. Eight-day rainfall (divided by
50 to be read on the right axes) and EXP1_CT LAI have
been superimposed for comparison purposes.
[33] The rainfall difference between FORCING2 and

FORCING1 reaches 38% and is about 16% on average
between the beginning of July and mid-September
(Figure 5a). In terms of fluxes, the higher rainfall of
FORCING2 leads obviously to an increase of both NEE

Figure 5. (a) Average cycles of the relative differences between EXP2_EC and EXP1_EC (CTESSEL
with a climatology of LAI forced by FORCING1 and FORCING2, respectively; see text) for rainfall, Net
Ecosystem Exchange (NEE), and LE from 8� to 13�N. (b) Average cycles of the relative differences
between EXP1_CT and EXP1_EC (CTESSEL forced by FORCING1 with a diagnostic and a climatology
of LAI, respectively; see text) for LAI, NEE, and LE from 8� to 13�N. (c) The CTESSEL prediction for
the control run (EXP1_EC): the convention for fluxes is positive upward. LE (W/m2) is multiplied by �1,
and NEE (mmol/m2/s) is multiplied by 30, to match the scale of LE fluxes on the right axis (Figure 5c).
Eight-day rainfall (divided by 50 to be read on the left axis) and EXP1_CT LAI have been superimposed
for comparison purposes. The differences are normalized with respect to EXP1_EC.
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and LE (12% and 11% on average over the same period). As
previously underlined, this rainfall differences decrease to
zero after the end of September. The differences in terms of
fluxes remains late in the season but are not really significant
as the absolute values of LE and LEE are low (Figure 5c).
The difference of behavior between the EXP1_CT (interac-
tive LAI) and EXP1_EC (climatology of LAI) experiments
are of particular interest (Figure 5b) regarding the impact of
LAI on the fluxes. The LAI cycle of CTESSEL is delayed of
about one month with regards to the climatology (Figure 5c).
In particular, the peak LAI occurs at the beginning of
September for the climatology whereas it occurs one month
later for CTESSEL. The difference in terms of LAI between
EXP1_CT and EXP1_EC is �27% on average between the
beginning of June and mid-August. From mid-August to the
end of December, it is inverted and equal to +24% on
average. In terms of fluxes, LE and NEE behaves differently
to these differences in LAI. Whereas the impact of LAI on
LE remains low (�7% and +11% over the two periods
identified above), LAI appears to be the main factor govern-
ing the annual cycle differences of the NEE fluxes between
these two experiments. The relative differences between
EXP1_CT and EXP2_CT are �39% from the beginning of
July to mid-August and +22% from mid-August to mid-
October and follows closely the LAI differences curve. As a
conclusion, both LE and NEE predictions are obviously
influenced by rainfall. The LAI impacts in a different way.
Whereas its influence on LE remains limited, this study
demonstrates that the phenology of LAI strongly governs the
time where the surface shift from sources to sink during the
growth phase of the vegetation, and inversely, from sink to
sources during the senescence phase.

4.2. CTESSEL Against the Satellite-Derived LAI and
Bias Correction

[34] Before using the satellite LAI products within the
assimilation scheme, a comparison between CTESSEL and
the two satellite-derived data sets is performed. In order to
reduce the established bias between CTESSEL and the
satellite products, a bias correction process described in
Appendix B is carried out. The time series of LAI for the
CTESSEL, MODIS and CYCLOPES LAI are plotted in
Figures 6a and 6b averaged for the three latitudinal bands
before and after bias correction, respectively. Precipitations
are superimposed for comparison purposes. Only grid
points where the satellite products are available are taken
into account. FORCING1 is preferred to FORCING2 for the
CTESSEL runs as it covers the period of availability of the
satellite-derived products (2001–2005 for MODIS and
2001–2003 for CYCLOPES). In addition, the FORCING1

Figure 6. Time series of LAI by latitudinal bands (from
top to bottom, Sahel, savannah, and forest). (a) Comparison
of satellite-derived LAI (MODIS and CYCLOPES) before
preprocessing (see text) with CTESSEL open loop;
CTESSEL and MODIS are plotted from 2001 to 2005,
and CYCLOPES is plotted from 2001 to 2003. (b) Same as
Figure 6a, but after rescaling for both satellite data sets and
temporal smoothing for MODIS. Additionally, 8-day rain-
fall amounts are given by black bars (scale is on the right
axis).
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corresponds to the pure outputs of the ECMWF forecasting
system. This allows to be placed in real condition for the
future LAI data assimilation system to be implemented at
ECMWF.
[35] Over Sahel and savannah (Figure 6a), the three data

sets exhibit a strong seasonality associated to the displace-
ment of the ITCZ to the north during the summer months.
The north-south gradient of the length of the growing
season is also well marked with longer season over savan-
nah than Sahel. Over forest, the signals are more stable all
over the year even if the satellite-derived LAI are more
scattered than the CTESSEL one. This can be attributed to a
bad correction of atmospheric, directional effects and/or
cloud detection on the reflectances used to retrieve LAI. In
contrast, the annual cycles are differently depicted. In
particular, the peaks of LAI simulated by CTESSEL are
lagged of about one month over Sahel with regards to the
two satellite products. Over savannah, they are in phase
with MODIS whereas CYCLOPES shows a LAI peak one
month earlier. This delay between CTESSEL and the
satellite products has also been observed by Gibelin et al.
[2006] who evaluate ISBA-a-gs (from which the photosyn-
thesis and growth modules are taken) at the global scale.
The decrease of LAI after the end of the rainy season is
quicker for CYCLOPES than for MODIS. The absolute
values of LAI are also very different. CYCLOPES shows
the lower values over savannah and forests. CTESSEL LAI
is clearly the higher below 12�N and MODIS presents
intermediate values between the two others. Over forest,
the overall stable LAI between 6 and 7 m2/m2 simulated by
CTESSEL is much higher than the satellite products. In
particular, the CYCLOPES LAI over forest are far too low
(<3 m2/m2). Furthermore, the MODIS data sets appear
strongly scattered with regards to CYCLOPES, in particular
over savannah and forest. The standard deviations over
forest are equal to 0.55 m2/m2 and 0.41 m2/m2 for MODIS
and CYCLOPES, respectively. Over Sahel, the vegetation is
mainly composed of annual herbs and the LAI during the
dry season should be close to zero [Le Houérou, 1989].
CYCLOPES and CTESSEL exhibits these expected low
LAI whereas MODIS shows significantly higher values. In
contrast, the satellite-derived LAI are strongly overestimat-
ing the CTESSEL simulations during the wet season over
Sahel. This can be attributed to the already described dry
bias of FORCING1 over this region. Over savannah, a
decrease of LAI centered on August is striking for MODIS
and, to a lesser extent for CYCLOPES. This could be
attributed to the well known little dry season affecting these
areas during August and September but it has been associ-
ated to the increase of the cloud cover at this period of the
year by Moulin et al. [1997]. The absence of a significant
decrease of rainfall during this period tends to corroborate
this assumption (Figure 6).
[36] The statistical characteristics of LAI from satellite

and CTESSEL differ substantially. Furthermore, the simpli-
fied 2DVAR, similarly to others DA methods derived from
the Best Linear Unbiased Estimates, aims at correcting for
Gaussian errors with a mean equal to zero and not for
systematic errors. At this time, a global map of LAI toward
the model and the observations could be corrected does not
exist. Prior to assimilation of the satellite retrievals into the
CTESSEL model, satellite model biases are thus removed

by scaling the satellite retrievals into the land model
prediction through matching of their respective histograms.
This approach has been developed by Reichle et al. [2007]
for soil moisture observations. This matching procedure
aims at reducing the bias between the model and the
observations without making any assumption of which part
of the bias comes from the model or from the data. In
addition, a smoothing method is applied to the MODIS
observations. The bias correction and the smoothing pro-
cesses are described in Appendix B. The time series of
satellite products after smoothing and bias correction are
more in agreement with CTESSEL (Figure 6b). Over forest
in particular, the overall stable LAI of about 6 m2/m2

matches the model prediction. The satellite products are
still affected by a low seasonal signal that is more to be
attributed to atmospheric perturbations than to real vegeta-
tion phenology. The scattering of MODIS LAI has been
strongly minimized thanks to the smoothing. Over savan-
nah, the two satellite data sets are in good agreement all
together and matches the CTESSEL LAI values in terms of
the minimum and maximum but the annual cycle, as already
highlighted above, strongly differs. Over Sahel, the ampli-
tude of the annual signal is much higher for the satellite
products than for CTESSEL. In addition, because of the
rescaling, the dry season LAI value for CYCLOPES is
higher than the simulated CTESSEL LAI whereas for
MODIS, it matches better. Finally, the phenology the
satellite products (date of the beginning of growth and date
of peak LAI) are not modified substantially by the rescaling
(see Appendix B).

5. Data Assimilation Results and Discussion

5.1. Point-Scale Evaluation

[37] The 2DVAR is evaluated on the Agoufou site during
the growing season 2005. Ground LAI measurements,
extracted every 10 days to mimics satellite repetitivity, are
assimilated into CTESSEL in order to analyze aboveground
biomass. The tree cover fraction being low, trees are not
considered in this study and CTESSEL is run considering
only C4 grasses. Furthermore, the implementation of the
data assimilation system with C3 grasses, C3 crops or C4
crops does not modify the conclusions of the study. Figure 7
displays the evaluation of the 2DVAR over the Agoufou
site: LAI, aboveground biomass, midday latent heat fluxes
and midday NEE averaged over 10-day periods are dis-
played in Figures 7a–7d, respectively. The convention for
fluxes is positive upward.
[38] This site, located in the Sahelian zone sensu stricto as

defined by Le Houérou [1989] is characterized by a short
rainy season of about three months. The vegetation growth,
composed mainly of annual herbs, is very rapid and is
followed by a strong senescence after the last rainfall
events. This is well depicted by the LAI and aboveground
biomass measurements (Figures 7a and 7b). The open loop
simulations of CTESSEL do not match this short growing
period. This is in accordance with the findings of the
comparison between CTESSEL LAI and the satellite LAI
products (over Sahel the simulated LAI peak is delayed with
regards to the satellite products). Over the Agoufou site, the
CTESSEL peak is also delayed by about 25 days together
with the senescence phase that extents further after the last
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rainfall events during the dry season. In contrast, the value at
LAI peak is quite well simulated by CTESSEL (1.45 m2/m2

and 1.80 m2/m2 for CTESSEL and ground measurements,
respectively). This differs from the comparison with the
satellite products but, over Agoufou, the meteorological
forcing is measured on site whereas over West Africa, the
FORCING1 based on the ECMWF forecast is used. The
ECMWF operational forecasting system is known to under-
estimate the Sahelian precipitation. The measured annual
rainfall is 410 mm/a whereas the corresponding grid point
value for FORCING1 is 47 mm/a (against 286 mm/a for
FORCING2). Concerning biomass, the 2DVAR data assim-
ilation system also corrects the delay of CTESSEL open loop
but the decrease phase appears slightly in advance.
[39] The analysis of aboveground biomass and LAI has a

low impact on water and NEE during the growing phase
(see Figures 7c and 7d). In particular, the peak value of
latent heat flux (LE) is very close with and without data
assimilation (DA) (242 W/m2 and 241 W/m2, respectively).
Sivakumar [1990] underlines that the primary factor gov-
erning evaporation variability over Sahel are the temporal
patterns of rainfall. The impact of the 2DVAR on the NEE
peak is also limited (�15.45 and �16.59 mmol CO2/m

2/s
with and without DA, respectively). During the senescence
phase, differences are more striking. The CTESSEL open
loop maintains a high evaporation rate and a high NEE even
after the last rainfall events. This can be attributed to the

higher LAI and consequently, the higher water extraction
from depth soil by the roots. To that respect, the CTESSEL
with the LAI analysis has a behavior better in agreement
with what we know of the LE dynamic over Sahel. Wallace
and Holwill [1997] among others show a return to very low
evaporation rate just 2 days after the last rainfall events
thanks to LE measurements performed at the end of the
rainy season over a Sahelian site similar to the Agoufou site.
For information, SIB and CASA NEE has been super-
imposed in Figure 7d. Both show almost no variability with
fluxes around 0 all around the growing season. These two
data sets forced by AVHRR NDVI for vegetation character-
istics may suffer from the limitation of this sensor in case of
low vegetation cover. CTESSEL NEE may represent a
strong improvement over the Sahelian region with regards
to these two data sets.
[40] For lack of available LE and CO2 fluxes on the site,

the order of magnitude of CTESSEL simulations is just
roughly verified by comparison to measurements already
performed by other teams over similar ecosystems. In
terms of LE, the daily (24-hour mean) value (averaged
over a 10-day period) reaches 90 W/m2 (not shown) that
corresponds to around 3 mm H2O/d. This is in good agree-
ment with value usually given for evapotranspiration over
Sahel during the core of the rainy season such as the
measurements performed during the Hapex-Sahel Experi-
ment [Kabat et al., 1997]. Concerning NEE, it shows a clear

Figure 7. A 2DVAR analysis of aboveground biomass from LAI observations over the Agoufou site
(Mali) during the year 2005: (a) LAI (solid line, after data assimilation; dashed line, open loop; stars,
observations); (b) aboveground biomass (solid line, analysis; dashed line, open loop; stars, observations);
(c) 10-day average latent heat flux at midday (solid line, after data assimilation; dashed line, open loop;
stars, observations); and (d) 10-day average NEE at midday (solid line, after data assimilation; dashed
line, open loop; stars, observations). SIB and CASA NEE of the corresponding grid points are
superimposed. Convention for fluxes is positive upward. The open loop CTESSEL simulations (dotted
line) and 10-day precipitation (bar) are superimposed for comparison purposes.

D24117 JARLAN ET AL.: LAI AND THE ECMWF LAND SURFACE MODEL

11 of 22

D24117



diurnal patterns (not shown) with the highest uptake rates
around noon and a permanent slight release to the atmosphere
at night. This is corroborated by measurements of Hanan et
al. [1998] performed over a natural savannah. They give
noon peak values reaching, on certain days, �15 mmol CO2/
m2/s (for LAI peak equal to 0.9 m2/m2). Falk et al. [2007]
measured on a site of natural savannah located in Burkina
noon values of�22 mmol CO2/m

2/s on average over July and
August (for LAI peak equal to 3.2 m2/m2; C. Brüemmer,
personal communication, 2008). CTESSEL with LAI analy-
sis gives �16.6 mmol CO2/m

2/s (average over a 10-day
period and for a simulated LAI peak of 1.45 m2/m2; compare
Figure 7).
[41] Concerning daily values, Hanan et al. [1998]

measurements reaches �3 mmol CO2 m2/s whereas
CTESSEL with LAI analysis is a significantly higher value
of �4.54 mmol CO2 m2/s (not shown) as it is an average
over a 10-day period. This may be attributed to the soil
respiration which is parameterized from the surface temper-
ature without taking into account soil moisture. Hanan et al.
[1998] values of nighttime respiratory CO2 fluxes are
between 2 and 5 mmol CO2 m2/s (average value around
3 mmol CO2 m

2/s). In contrast, CTESSEL (with or without
LAI analysis) nighttime CO2 fluxes are around 2 mmol CO2

m2/s which is quite low. In particular, Veenendaal et al.
[2004] underline the occurrence of marked spikes of CO2

release because of rainfall events over a semiarid savannah
in southern Africa. This behavior is also observed over the
Agoufou site after the analysis of the first measurements of
NEE performed at the beginning of the growing season
2006 (V. Le Dantec, CESBIO, personal communication,
2008). This suggests the need for a better parameterization
of the soil respiration into CTESSEL in the near future.
Finally, the return to very low value of the simulated NEE
after the last rainfall events has already been observed by
Verhoef et al. [1996].
[42] Two additional experiments have been carried out to

investigate the effect of negatively biased forcing precipi-
tation (such as FORCING1) on the simplified 2DVAR
system. Table 1 displays the peak values of LAI, LE and
NEE for the open loop simulations and the 2DVAR system.
Three cases are considered: the initial measured precipita-
tion, precipitation divide by 2 and precipitation divided by

4. In contrast to the results with the initial forcing precip-
itation, LAI, LE and NEE peak values strongly differs
between 2DVAR and open loop simulations by introducing
a dry bias on the precipitation forcing. In particular, if the
precipitation is divided by 4, the 2DVAR system is able to
maintain an LAI close to the one simulated with the initial
forcing. Furthermore, the LE and NEE are divided by 2
whereas they are divided by 3 and about 4 for the open loop,
respectively. As a conclusion, the impact of the analysis of
LAI on LE and NEE is low if the water availability is
sufficient for vegetation growth (apart from the delayed
decrease of the fluxes after the last rainfall). When the
precipitation is negatively biased, the analysis of LAI allows
maintaining a significantly higher evaporation rate and NEE
than with the open loop. This could be of particular interest
for the simulation of the African Monsoon by the NWP
model of ECMWF.

5.2. Application to the West Africa Window

[43] The 2DVAR algorithm has been evaluated using twin
experiments and over a site where ground measurements
were available. The objective of this part is to apply this
algorithm to the real MODIS LAI products (after rescaling
and smoothing). The impact of the LAI data assimilation on
the simulated latent heat and NEE is evaluated. Results are
compared to the TESSEL model (without the interactive
vegetation part) in terms of LE for information.
5.2.1. LAI Time Series
[44] Figure 8 displays the LAI time series for the three

latitudinal bands described above. Thanks to the 2DVAR
system, the low values of LAI over Sahel are corrected with
peak values ranging from 1.0 to 1.5 m2/m2 instead of values
lower than 0.5 m2/m2 for CTESSEL open loop. Over
savannah, the analysis follows very closely the MODIS
products apart from the spring months where analysis are
slightly above the satellite LAI. Indeed, during the forward
integration of the model after the analysis, LAI is decreasing
(not shown). This is attributed to the simulated environ-
mental conditions (and in particular the root zone soil
moisture) that are not sufficient to maintain such a high
LAI. Around the LAI peak, analysis and open loop are more
in agreement. Finally, the senescence phase is closely
following the last rainfall events of the year for the analysis
whereas it is too slow for the open loop (this corroborates
the remark made over the Agoufou site above). Another
striking feature is also the artificial break in the growing
phase of the LAI for the MODIS product during the spring
months. It is certainly an artifact of the satellite products due
to bad atmospheric corrections [Moulin et al., 1997] as
previously discussed. Nevertheless, it has been minimized
thanks to the smoothing filter with the upper envelope. Over
forest, the LAI are quite stable for the two LAI apart from
noise attributed to atmospheric perturbations of the MODIS
products.
5.2.2. Quality of the Analysis
[45] For diagnosing the properties of data assimilation

systems, we use three quantities: (1) the differences (y�H
(xb) in equation (2) are called innovations, (2) the residuals,
computed by replacing the background value xb by the
analyzed one xa in the differences above. It represents the fit
of the observations to the analysis, and finally (3) the
analysis increment, reconstructed a posteriori by subtracting

Table 1. Peak Values of LAI, LE, and NEE for CTESSEL Open

Loop and CTESSEL Analysis for Different Values of Precipitationa

LAI (m2/m2) LE (W/m2) NEE (mmol CO2/m
2/s)

PP
Open loop 1.43 241.6 �15.45
2DVAR 1.62 242.3 �16.59

PP/2
Open loop 1.09 152.2 �7.95
2DVAR 1.62 180.1 �9.09

PP/4
Open loop 0.7 81.2 �4.31
2DVAR 1.62 117.2 �7.94

aAbbreviations are as follows: 2DVAR, two-dimensional variational;
CTESSEL, Carbon-TESSEL; LAI, leaf area index; LE, latent heat fluxes;
NEE, Net Ecosystem Exchange; PP, measured precipitation; PP/2,
measured precipitation divided by 2; PP/4, measured precipitation divided
by 4.
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the background from the analysis. Within this study, the
analyzed and the observed one are the LAI. By lack of
ground ‘‘truth,’’ these three quantities can reveal a lot of the
performance of the assimilation system. Figure 9 displays
the Hovmöller diagram (average over 2001–2005) of the
innovations (Figure 9a), the residuals (Figure 9b), and the
analysis increments (Figure 9c). Values below 0.2 m2/m2

have been masked for a better clarity of the figure.
[46] First, the fit of the observations to the background

and analysis can be conveniently examined by Figures 9a
and 9b. As expected, one can see that the differences are
smaller for the analysis departures (residuals) than for the
background departures (innovations). Stated differently, the
LAI analysis draw the CTESSEL simulation to the MODIS
products thanks to the simplified 2DVAR. Information has
been extracted from the observations. Furthermore, most
of the time, the innovations and residuals are low (below <
0.3 m2/m2). Below 5�N, corresponding to equatorial forest
areas, this is attributed to the quite constant LAI both for
CTESSEL and for the observations together with the
favorable climatic conditions (in terms of rainfall) to main-
tain such high LAIs (see Figure 8). Over savannah and
Sahel, the residuals and the innovations are also negligible
during winter because of the low and constant LAI values
corresponding to the dying vegetation of these dry months.
The innovations and the residuals are significantly different
from zero (tested with a t test) during spring over savannah
and during summer over Sahel. For these two cases, a
strong negative bias of CTESSEL has already been identi-
fied even after the rescaling process. This means that the
analysis is above the observations at the beginning of the
assimilation window but, at the time of the observations
(around the middle of the assimilation window), it has gone
below the observations. Indeed, the rainfall and consequently,

soil moisture, conditions are not sufficient to maintain such a
high quantity of vegetation and the vegetation is dying during
the forward integration of the model.
[47] In a perfect data assimilation system increments

should be small and time average close to zero which would
illustrate an absence of bias between the model and the
observations. The preprocessing of the data has strongly
minimized the bias as shown above (Figure 6b), and the
analysis increment (not shown). Nevertheless, some bias
still appear over savannah and Sahel. This bias is attributed
to (1) the slow growth in the CTESSEL model (e.g., the
delayed peak of LAI values in Figure 6b) and to (2) the dry
bias of the precipitation used to force the model, in
particular over Sahel. Nevertheless, it is interesting to point
out that even in a case of a biased forcing, the assimilation
system is still available to provide with realistic value of
LAI. As a conclusion, the system is performing quite well
with residuals lower than innovations and analysis incre-
ments reasonably small over most of the study window.
[48] Figure 10 displays the average analysis increments

over the period 2001–2005. The map (Figure 10a) exhibits
a marked contrast between savannah and Sahel to the
north with positive increments and forest on the south
where the increments are slightly negative. The histogram
(Figure 10b) should be centered on zero in the case of
unbiased data but it is clearly shifted to positive values.
Nevertheless, this shift remains reasonable (mean =
0.05 m2/m2) and it has been strongly reduced thanks to the
a priori rescaling of the satellite products.
5.2.3. Effect of the LAI Analysis on Simulated Latent
Heat and CO2 Fluxes
[49] The objective of introducing an interactive LAI and a

data assimilation system in the model of ECMWF is
twofold: (1) vegetation, and LAI in particular, affects, the

Figure 8. Time series of LAI by latitudinal bands (from top to bottom, Sahel, savannah, and forest):
CTESSEL analysis and MODIS. Additionally, 8-day rainfall amounts are given by black bars.
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surface latent heat flux (van den Hurk et al. [2003], among
others, demonstrate the impact of LAI on the annual land
surface evaporation cycle) that is of primary importance for
NWP; (2) to provide with NEE prediction based on a
biophysically based model (a photosynthesis and a vegeta-
tion growth modules).that will be propagated into the
atmosphere thanks to the atmospheric dynamical model.
[50] Figure 11 displays the annual cycle of the differences

(in percent) between CTESSEL+LAI analysis and CTESSEL
open loop (divided by CTESSEL open loop simulations) in
terms of LAI, LE and NEE averaged over 2001–2005. The
LAI differences between the two runs are obviously consis-

tent with what has been underlined at Figure 6b. The main
LAI differences (on the order of 50% more for CTESSEL
analysis) are located over Sahel in summer and over savan-
nah at spring. On average, this 50% LAI leads to a similar
increase in NEE except at the beginning of spring between 7�
and 10�N where the increase is higher than 80%. CTESSEL
LAI reach their lower values of the year (about 1 m2/m2, see
Figure 6b) whereas the analysis draw the simulations to the
MODIS products values, about 1.5 m2/m2 higher. The NEE
encountered at this time of the year is low (because of a high
incoming radiation combined with a high water stress). This
explains the high relative differences in NEE. Likewise, the

Figure 10. Average analysis increments over 2001–2005: (a) map of West Africa and (b) histogram of
values.

Figure 9. Hovmöller diagram of (a) the innovations, (b) the residuals, and (c) the analysis increments
(see text; average annual cycle over the period 2001–2005).
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�30% LAI differences around January over savannah are
also reflected in a significant decrease in NEE (on the order of
�80%).
[51] The impact on LE is much more moderate with a

maximum impact of about +24% (corresponding to a LAI
difference of +70%). In addition, this maximum impact
occurs at the beginning of the rainy season when the
absolute values of LE are low. Most of the time, the impact
of LAI on LE is lower than 15% (with LAI differences of
more than +50%). In addition, the difference reach around
�40% over a large area extending between 5�N and 10�N at
the end of the rainy season (around January). This is
attributed to the shifted senescence phase of CTESSEL
open loop already observed over the Agoufou site (see
Figure 7).
[52] In order to investigate the impact of LAI analysis on

LE and NEE interannual variability, the normalized stan-
dard deviation (i.e., the standard deviation divided by the
average) over 2001–2005 of LAI, LE and NEE are com-
puted and summarized by Hovmöller diagrams in Figure 12
for open loop and CTESSEL + Analysis. The normalized
standard deviation is hereinafter improperly called ‘‘vari-
ability’’ for simplicity. Hovmöller of rainfall and TESSEL
LE variability are also displayed for comparison purposes in
Figures 12g and 12h, respectively. For information, the
LAI used for TESSEL is a constant LAI all over the year
of 3 m2/m2 and 5 m2/m2 for low and high vegetation,
respectively. The variability of 8-day rainfall (Figure 12h)
ranges from 22% to 223%. This range of values is much
more than for other plotted variables because of the short
temporal scale of variability of rainfall. The highest vari-
ability is encountered over Sahel. Rainfall, in the Sahel
is mostly generated by squall lines, which typically arrive at

3-day intervals throughout the rainy season. Furthermore,
storms within these squall lines are convective and the
temporal distribution of rainfall is thus highly variable. This
high temporal variability combined to low 8-day amount
gives high normalized standard deviation (above 100%).
Another area of high variability is located to the extreme
south of the area during the summer months. During this
period of the year, the ITCZ reaches its northern position
leading to a significant decrease of the 8-day rainfall
amount to the south and consequently, an increase of its
variability.
[53] The Hovmöller diagrams of LE for CTESSEL open

loop, analysis and TESSEL (Figures 12c, 12d, and 12g,
respectively) presents quite similar shape. Furthermore,
most of the patterns are in good agreement with the ones
of precipitations (Figure 12h). In particular, the northern
strip of LE high variability from September to January and
from April to June can be related to the similar pattern of the
8-day rainfall. These two temporal periods correspond to the
beginning and to the end of the rainy season, respectively.
During the core of the rainy season, the rainfall events are
more regularly distributed (Figure 12h) and LE displays a
lower variability on the three runs (CTESSEL open loop
(Figure 12c), CTESSEL analysis (Figure 12d), and TESSEL
(Figure 12g)). By contrast with the northern area, the area of
high rainfall variability to the south during the summer
months (already identified above) is not accompanied by a
strong LE variability. The high annual rainfall amount
allows for a full filling of the soil reservoir. Consequently,
even during the short period of lower rainfall, water
availability is sufficient to keep high evaporation rate. The
day-to-day variability is also further minimized thanks to the
high LAI encountered over these region (around 6 m2/m2;

Figure 11. Relative difference in percentage between CTESSEL + LAI analysis and CTESSEL open
loop averaged over 2001–2005 with FORCING1 for (a) LAI, (b) LE, and (c) NEE. Relative differences
ranging from �3% to +3% are masked for clarity purposes.
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see Figure 8). In addition, the LAI is not fluctuating a lot (see
Figures 12a and 12b).
[54] In contrast with LE, the LAI and NEE Hovmöller

diagrams exhibits more distinct differences between
CTESSEL open loop and CTESSEL analysis. In addition,
the Hovmöller patterns are not following so closely the
rainfall patterns of variability. The northern strip of rainfall
variability does not exhibit a high LAI and NEE variability.
Over these areas, LAI and the assimilation of carbon by the
vegetation (which is mainly governing the NEE) are low
and their year-to-year variability is also below 20%. Just
south this strip of low variability, LAI and NEE displays
their highest variability. This area of high variability on both
LAI and NEE is moving northward with t ime
(corresponding to the northward movement of the ITCZ).
The variability of LAI analysis during the core of the rainy
season over Sahel and northern savannah (above 10�N) is
higher than the one of LAI open loop. The variability of
NEE follows quite closely the variability of LAI with a
higher variability of NEE analysis than for the NEE open
loop from May to December. In contrast with LE, the
variability of NEE is strong even during the core of the
rainy season over Sahel (August/September). This period of
the year corresponds to the LAI peak and potentially the
highest year-to-year absolute differences in terms of LAI.
Nevertheless, the influence of the rainfall on NEE variabil-
ity is also important. The area of high rainfall variability to
the south during the summer months (already identified

above) is accompanied by a high variability of NEE (in
contrast with LE). Vegetation may strongly decrease the
assimilation of carbon during stress period even if the LAI is
high. The assimilated carbon will be used to maintain
vegetation tissues alive and will not create new tissues.
The resulting NEE will decrease. This could explains the
highest variability of NEE over these areas.
[55] As a conclusion, the analysis of the normalized

standard deviation of LAI, LE and NEE shows that the
interannual variability of LE is more related to rainfall
variability than to LAI whereas NEE variability is in good
agreement with LAI variability. This has strong consequen-
ces for land surface and, in particular, vegetation modeling
for NWP and climate: Figures 11 and 12 show that,
regarding the limited impact of analyzing LAI on LE, a
LAI data assimilation appears of secondary importance for
the simulation of LE. Inversely, an interactive LAI reacting
to environmental conditions combined with a data assimi-
lation system to avoid model divergence is needed for NEE
prediction at the seasonal and interannual timescales.

5.3. Comparison of CTESSEL NEE With SIB and
CASA

[56] The CTESSEL NEE with and without LAI data
assimilation is compared to two terrestrial surfaces CO2

flux data set: the CASA and SIB fluxes. The NEE simulated
by CTESSEL open loop and analysis averaged over the
years 2001 to 2005 are plotted together with SIB and CASA

Figure 12. Hovmöller diagrams of the (8-day average) normalized standard deviation (standard
deviation divided by the mean) over the 2001–2005 period for LAI, LE, and NEE in percentages:
CTESSEL open loop (left) and CTESSEL analysis (right). The normalized standard deviation of
TESSEL LE (constant LAI) over the same period and the standard deviation of the 8-day cumulative
rainfall are displayed in Figures 12g and 12h, respectively, for comparison purposes. Areas where LAI
analysis and abs(LAI analysis - LAI open loop) are below 0.2 m2/m2 are masked.
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simulations at Figure 13 for three latitudinal bands. CASA
is a climatology (simulated with average meteorological and
NDVI forcings) and the available SIB fluxes are for year
2002. Table 2 summarizes the NEE average value over the
‘‘growing’’ season (criterion: NEE < 0) and the ‘‘dry’’
season (criterion: NEE > 0) for the four data sets.
[57] Above all, the four NEE data sets are of the same

order of magnitude. Over Sahel, CTESSEL with LAI data
assimilation leads to higher NEE during the growing season
than CTESSEL open loop because the LAI is increased by
the analysis (compare Figure 8), and consequently is the
assimilation of CO2 by the plants. During the dry season,
CTESSEL open loop and analysis match together as NEE is
mainly governed by the soil respiration (parameterized by a
function of the surface temperature in model). CASA and
SIB respiration take into account soil moisture. This may
explain the differences observed with CTESSEL. Notably,
at the beginning of the growing season, the first rainfall
events are known to cause CO2 drop into the atmosphere
because of soil respiration (V. Le Dantec, personal commu-
nication, XXXX). This behavior seems to be caught by
CASA and SIB whereas CTESSEL exhibits a smooth
increasing shape from December to June to be associated
with the regular increase of the incoming solar radiation
(not shown). During the growing season, the assimilation of
CO2 by the plants (An term in equation (A12)) drives the
NEE. Differences in the An calculation together with differ-
ences in the meteorological forcing used explain quite high
discrepancy between the four data sets. Nevertheless, the
marked seasonality associated to the African monsoon is
well reproduced by the three models. Concerning the wet
season NEE (Table 2), CTESSEL open loop and CASA are
the lower, SIB shows the higher value whereas CTESSEL
analysis is in between. Over the period of study, the annual
cycle of CTESSEL open loop and analysis is delayed with
regards to the two other data sets. The peak NEE, that
occurs in September for CTESSEL, is delayed of about
month with regards to SIB. Concerning the beginning of the
growing season, the analysis of LAI in CTESSEL helps to
correct for this time lag. Over savannah, the four data
sets display peaks NEE of the same order of magnitude.
CTESSEL (analysis and open loop) has a stronger seasonal
signal than the two others with higher respiration rates

during the dry season and higher CO2 absorption during
the growing season. Compared to SIB and CASA, the
CTESSEL seasonal cycle is also characterized by a CO2

assimilation peak delayed of one month as over the Sahel.
The decrease of the CO2 assimilation after the peak occurs
systematically later for CTESSEL than for SIB and CASA.
These shifted seasonal cycles are in accordance with the
delayed LAI cycle already identified above. The LAI data
assimilation partly improves this shifted CO2 fluxes. And in
particular, the time when the surface goes from source to
sink of carbon at the beginning of the growing season. Over
forest, SIB and CASA are slightly shifted in time but they
both show a strong biennial signal (with CO2 absorption
during spring and autumn and CO2 drop during summer and
winter) that is not reproduced by the CTESSEL model
either with or without LAI analysis.
[58] As a conclusion, CTESSEL exhibits CO2 fluxes in

relatively good agreement with two data sets used as
boundary condition for CO2 transport model. After data
assimilation, CTESSEL NEE is in better timing with
SIB and CASA than CTESSEL open loop. At ECMWF,
CTESSEL is intended to replace the CASA climatology
used for the CO2 surface fluxes. Its ability to simulate

Table 2. Average Monthly NEE Values by Season for CTESSEL

Open Loop, CTESSEL With LAI Data Assimilation, SIB, and

CASAa

CT OL CT AN SIB CASA

Dry Season, NEE > 0
Sahel 0.13 0.13 0.21 0.23
Savannah 1.50 1.49 0.72 0.77
Forest 0.18 0.12 0.56 0.41

Growing Season, NEE < 0
Sahel �0.25 �0.43 �0.21 �0.69
Savannah �1.42 �1.83 �1.44 �1.07
Forest �0.15 �0.25 �0.78 �0.57

aSee text. The dry season is defined as NEE > 0 and the wet season as
NEE < 0. Average monthly NEE values are in mmol/m2/s. Abbreviations
are as follows: CASA, Carnegie-Ames-Stanford approach; CT AL,
CTESSEL with LAI data assimilation; CT OL, CTESSEL open loop;
SIB, simple biosphere.

Figure 13. Monthly NEE by latitudinal bands for CTESSEL open loop and analysis (climatology from
2001 to 2005), SIB, and CASA (see text): (a) Sahel, (b) savannah, and (c) forest.
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interannual variability of surface carbon fluxes is expected
to bring a significant improvement on the actual system.

6. Conclusions and Perspectives

[59] The ECMWF land surface model has been modified
to include an interactive vegetation module able to simulate
CO2 Net Ecosystem Exchanges and to diagnose Leaf Area
Index (LAI). The model is named CTESSEL for Carbon-
TESSEL. A LAI data assimilation system to simulate
operationally NEE is presented. It is based on the CTESSEL
model constrained by satellite-derived LAI products. The
evaluation of the system is performed over West Africa
from 2001 to 2005. A preliminary experiment shows a
significant impact of the LAI on NEE predictions from
CTESSEL open loop over a region covering a large part of
Sahel and savannah. Prior to the data assimilation,
two satellite-derived LAI data sets are compared to the
CTESSEL open loop simulations over West Africa: the
CYCLOPES and the MODIS LAI. The satellite products
are significantly lower than the CTESSEL predictions for
the equatorial forests and the CTESSEL annual cycle is
shifted with regards to satellite-derived LAI over Sahel and
savannah. The growth is quite low and the senescence is
late. The bias between the satellite-derived LAI and the
CTESSEL open loop is reduced thanks to a histogram
matching method. Finally, the MODIS LAI are chosen as
input for the data assimilation system as they are available
over the entire period of study and they fit better to the
CTESSEL simulations after matching. The data assimilation
method is a simplified 2DVAR. It presents the advantage to
avoid the development of the adjoint and the tangent linear
of the CTESSEL model.
[60] This approach is first evaluated locally on the Sahe-

lian site of the AMMA project located in Mali. With regards
to the open loop, the CTESSEL simulations constrained by
the analysis of LAI are more in agreement with the ground
measurements in terms of LAI and aboveground biomass.
In particular, the delayed growth of the open loop is
corrected thanks to the data assimilation system. In terms
of fluxes, open loop and analysis are close until the LAI
peak. Afterward, the open loop maintains a high evapo-
transpiration rate and NEE thanks to a high LAI. In contrast,
the analysis has reduced the LAI to zero: the evapotranspi-
ration and NEE are much lower and close to nil. Additionally,
the order of magnitude of NEE and LE (with or without data
assimilation) are in good agreement with measurements
performed by other teams over similar ecosystems. Never-
theless, the soil respiration parameterization of the CTESSEL
model is too rough to capture the dynamics of respiration of
the Sahelian soils and must be improved in a near future.
[61] The simplified 2DVAR approach is applied to West

Africa in a second part. It is shown that the data assimilation
performs well in terms of LAI with analysis closer to the
satellite-derived LAI than the forecast. Therefore, the slow
growth and the late senescence of the CTESSEL open loop
LAI simulations highlighted above are strongly improved
thanks to the data assimilation system. In terms of fluxes,
even if the forcing, and in particular precipitations plays a
major role on LE and NEE, the analysis of LAI impacts
much stronger the annual cycle and the interannual vari-
ability of NEE than LE. Finally, the NEE predictions before

and after analysis of LAI are compared to two other models
output: CASA and SIB. The order of magnitude of the three
data sets agrees well and the delayed annual cycle of
CTESSEL is reduced by the LDAS. It is concluded that a
LDAS is essential for NEE predictions at seasonal and
interannual timescales while a LAI satellite based climatol-
ogy may be sufficient for accurate LE predictions.
[62] At ECMWF, the CTESSEL model is intended to

provide the surface fluxes of natural CO2 for the atmospheric
transport modeling in the near future and to substitute the
current operational land surface scheme once the global
verification will be completed. The future operational land
data assimilation will include together the analysis of the
root zone soil moisture [see Drush, 2007] and the analysis of
LAI presented in this paper. As such, the system will
simulate operationally NEE. In addition, the evaluation of
CTESSEL is carrying on within the frame of AMMA Land
Surface Model Intercomparison project. Finally, the soil
parameterization will be improved by introducing a model
of soil respiration in a near future and the simplified 2DVAR
for the analysis of LAI will be evaluated at the global scale.

Appendix A: CTESSEL Model

A1. Photosynthesis and Stomatal Resistance Model

[63] The canopy resistance is calculated from photosyn-
thesis, which is the: net CO2 assimilation (An) by the
canopy. An is calculated as a function of different environ-
mental factors. First, CO2 assimilation limited by the air
CO2 concentration is determined via a saturation equation:

Am ¼ Am;max 1� e �gm CI�Gð Þ=Am;maxð Þ
� �

; ðA1Þ

where Am,max is the maximum net CO2 assimilation, gm is
the mesophyll conductance, Ci is the CO2 concentration in
the leaf and is the CO2 concentration at which assimilation
compensates respiration, called CO2 compensation concen-
tration. Am,max depends on temperature via a Q10 function.
The internal CO2 concentration Ci, is directly derived from
the CO2 concentration in the air Cs. It is controlled by the air
humidity via the specific humidity deficit of the air Ds. If
the deficit exceeds the maximum deficit tolerated by the
vegetation Dmax, the plant closes its stomata. Dmax is
vegetation-dependent. The CO2 assimilation limited by CO2

concentration is further limited by radiation by

An ¼ Am þ Rdð Þ 1� e
�eIa

AmþRdð Þ
� �

� Rd ; ðA2Þ

where Ia is the photosynthetic active radiation (PAR), e is
the initial quantum use efficiency and Rd is the dark
respiration. Rd is parameterized simply as a function of Am.
[64] The stomatal conductance to CO2, gsc, is estimated

using a flux gradient relationship, modified to account for
the effect of a specific humidity deficit on stomatal aperture.
The first guess g*sc is given by

gsc* ¼
An � Amin

Ds

Dmax

An þ Rd

Am þ Rd

	 

þ Rd 1� An þ Rd

Am þ Rd

	 


Cs � Ci

; ðA3Þ
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where Amin represents the residual photosynthesis rate (at
full light intensity) associated with cuticular transfers when
the stomata are closed because of a high specific humidity
deficit. The diffusion of CO2 interacts with that of water
vapor. The first guess of the stomatal conductance to CO2 is
be corrected for this interaction and calculated interactively
to refine the estimation. Finally, the stomatal conductance to
water vapor gs is given by

gs ¼ 1:6gsc þ gc; ðA4Þ

where gc is the cuticular conductance (a vegetation-
dependent parameter).
[65] The soil stress parameterization is based on a meta-

analysis of several herbaceous and woody vegetation types
[Calvet, 2000]. The meta-analysis shows relationships be-
tween gm and Dmax for low vegetation and between gm and
f0 for high vegetation. Furthermore, it seems that plants
react in two different ways to soil moisture stress. There are
plants that try to avoid stress, by reducing the evaporation
via stomatal regulation. This stress strategy is typified as
defensive. Others apply an offensive strategy in order to
resist stress, by a more efficient root water uptake or a more
rapid growing cycle. Among species within the seven
vegetation classes of CTESSEL often both strategies occur.
Therefore, it is not easy to generalize the strategy for each
class. It seems most likely that coniferous forest has a
defensive strategy, whereas an offensive strategy is assigned
to the other classes. Further details on the soil stress
parameterization can be found in the work of Voogt et al.
[2006]. The net CO2 assimilation calculated at the leaf scale
is upscaled at the canopy scale assuming that leaf param-
eters do not vary within the canopy. The attenuation of the
incoming shortwave radiation in the canopy is computed
thanks to a simple radiative transfer model [Calvet et al.,
1998].

A2. Vegetation Growth Model

[66] The interactive LAI is based on biomass evolution
due to photosynthetic activity. The biomass module simu-
lates growth and mortality of the vegetation. The growth of
active biomass B is based on the accumulated net CO2

assimilation over the previous day An,day and the LAI is
obtained from the biomass following

aB ¼ B

LAI
: ðA5Þ

In reality, aB depends on climate (temperature and CO2

concentration) and nitrogen fertilization. In order to account
for plant morphology, the nitrogen dilution concept is
applied for the biomass evolution. The plant N decline
model is a well-established agronomical law relating the
plant N in nonlimiting N supply conditions to the
accumulated aboveground dry matter. The critical plant N
is the value of N maximizing growth, and this value
decreases for increasing biomass accumulation following a
negative power law. The basis of the model is that the
metabolic component B of the plant biomass is related to
total biomass BT through an allometric logarithmic law
[Calvet and Soussana, 2001]. In CTESSEL, the metabolic
biomass component is identified as the active biomass and

the relationship between active biomass B and total
aboveground biomass BT is

BT ¼ B

c

	 
 1
1�a

; ðA6Þ

where a and c are constant parameters. The total above-
ground biomass consists of the active biomass reservoir and
the structural aboveground reservoir Bs, which can be
considered as the ‘‘living’’ structural biomass, like the stem.
For forests, wood is a dead reservoir and does not contribute
to Bs. Within the nitrogen dilution model a relationship
between the leaf area ratio LAR and the aboveground
nitrogen concentration NT is applied:

LAR ¼ LAI

BT

¼ eNT þ f 1:48ð Þ; ðA7Þ

where e and f are called plasticity parameters and are
derived per vegetation type. Equation (A7) can be used as a
closure equation to estimate aB

aB ¼ 1

eNa þ
f

cB�a
T

; ðA8Þ

where Na is the nitrogen concentration in the active
biomass. It depends on vegetation type and on the nitrogen
fertilization. For further details and derivations see Calvet
and Soussana [2001]. In this way, ab has become a model
variable depending on BT. However, for global simulations,
it is desirable to keep ab as a constant parameter in order to
let aB represent rather intrinsic plant characteristics
denoting a biological adaptation to average climate and
growing conditions [Calvet and Soussana, 2001]. For that
purpose, equation (A8) can only be solved by iteration.
Moreover, LAR and NT data to derive the plasticity
parameters by regression is lacking. However, data is
available for leaves in the form of the specific leaf area SLA
and the nitrogen content in leaves NL:

SLA ¼ LAI

BL

¼ eNL þ f : ðA9Þ

Both the iteration issue and the availability of data to derive
e and f give rise to modify the nitrogen dilution module.
Equation (A8) is simplified by considering aB as the ratio of
the biomass of green leaves to LAI:

aB ¼ 1

SLA
¼ 1

eNL þ f
: ðA10Þ

A3. Soil Respiration and NEE Parameterization

[67] Since the biomass model is not coupled to a soil
model, soil respiration needs to be parameterized in another
way. In CTESSEL the respiration is calibrated in order to
simulate a zero net CO2 exchange over a multiyear period.
The CO2 ecosystem respiration is split into two terms. The
first is the dark respiration Rd (parameterized from Am). The
second respiration term represents both heterotrophic respi-
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ration from the soil and autotrophic respiration from the
above- and belowground structural biomass and named,
hereinafter, Rsoilstr. A Q10 function is used for its
parameterization:

Rsoiltr ¼ Reco � Rd ¼ R0Q
Tsoil�25

10ð Þ
10 ; ðA11Þ

where R0 is the reference respiration at 25�C, Tsoil is the
temperature of the second soil layer and Q10 is fixed at 2.0.
R0 is determined per vegetation type in each grid box,
assuming equilibrium between multiannual net CO2 assim-
ilation, harvest and residual respiration.
[68] Finally, the net ecosystem CO2 exchange (NEE) is

given by

NEE ¼ An � Rsoilstr: ðA12Þ

Appendix B: Preprocessing of the Satellite LAI
Products

[69] The satellite-derived LAI data sets are both nega-
tively biased with regards to the CTESSEL open loop
simulations (forced with FORCING1). The reflectances
from which the LAI is retrieved are perturbed and noisy.
Because of atmospheric and directional effect, the absolute
LAI values are subject to question. The phenology (start,
end and peak of the growing season) is assumed to be better
depicted by the satellite. In addition, the simplified 2DVAR,
similarly to others DA methods derived from the Best
Linear Unbiased Estimates, aims at correcting for Gaussian
errors with a mean equal to zero and not for systematic
errors. Therefore, the satellite LAI products are debiased by
rescaling their histograms to the CTESSEL LAI simulations
by adjusting the 5th and 95th percentiles. As such, there is a
risk that part of the removed bias originates from the model
and not from the observations. This kind of bias correction
would tend to reinforce the potential model bias. To limit

this risk, the rescaling is computed by vegetation types
(thanks to the simplified ECOCLIMAP vegetation map)
independently of the geographical area and of the time as
one can expect that the bias is localized either temporally
(during the summer month where the cloud cover is
important for instance) or spatially (over area where the
vegetation is dense). This approach ensures that the phe-
nology is kept and that only the absolute values are
adjusted. Finally, this approach has shown to give better
results than by taking all the LAI values independently of
their vegetation types (not shown). For each grid point, the
dominant vegetation type is determined and the rescaling is
applied by vegetation types over the study window. For
information, four dominant vegetation types are present:
evergreen, grass C3, grass C4 and crops C3. The histograms
of CYCLOPES and MODIS LAI products (for all vegeta-
tion types) are compared to CTESSEL simulated values
before and after rescaling at Figure B1. The rescaling is really
efficient for MODIS with a smooth curves over the range of
LAI values apart from the higher LAI corresponding to
equatorial forest that are not totally retrieved after rescaling.
In contrast, the histogram of CYCLOPES LAI is more
discontinuous with peaks at 2, 4, and 6 m2/m2 which are
not reproduced by CTESSEL. After rescaling, the peaks
remain and the rescaled histogram does not match the
CTESSEL one properly.
[70] The MODIS data set is available over the whole

study period (2001–2005) and has LAI values in better
agreement with CTESSEL after rescaling. Nevertheless, it
shows strong scatter (see time series in Figure 6a). The
second step in the preprocessing is to apply a temporal
smoother to MODIS LAI products. The CYCLOPES LAI
already presents a smooth temporal evolution. This corrob-
orates the results of Weiss et al. [2007] who show the
smoothness of the CYCLOPES products by comparison to
other satellite-derived LAI data sets.
[71] The evolution of the CTESSEL LAI has a relatively

smooth dynamic and the model is not supposed to match the
high-frequency oscillation of the satellite LAI products that

Figure B1. LAI histograms for CYCLOPES and MODIS before and after rescaling to CTESSEL open
loop LAI values. The availability of LAI products is 2001–2003 and 2001–2005 for CYCLOPES and
MODIS, respectively.
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are attributed to atmospheric perturbations, erroneous
clouds masking and differences in the acquisition geomet-
rical configuration. Since these perturbations lead to a
negative bias, a upper envelope temporal smoother is
applied to the time series over each grid point independently.
The Best Index Slope Extraction filter is chosen (BISE
filter) [Viovy et al., 1992]. Since this filter is difficult to
parameterize, a preliminary study aiming to test every
combination of parameters values is carried out in order to
find the best tradeoff between smoothing and preservation
of peak values. With this optimal parameter sets, the signal
is clear and smooth over most regions. Figure 6b shows the
time series of satellite products and CTESSEL LAI (same as
Figure 6a) after rescaling and smoothing of MODIS LAIs.
[72] Table B1 displays the bias between the satellite-

derived LAI and the CTESSEL open loop: average bias
(m2/m2), the bias at LAI peak (m2/m2), the peak date bias
(days) and the bias of beginning of growth date (days) before
and after histogram matching for the three latitudinal bands.
Following White et al. [1997], the date of the beginning of
growth has been defined as the date t when the difference
between LAI(t) and LAImin becomes higher than 30% of
annual amplitude. The calculation of phenology dates for
forest has been avoided. The bias reduction is not homoge-
neous over the region of study and the agreement between
MODIS and CYCLOPES has been deteriorated over Sahel.
Nevertheless whereas the bias between CYCLOPES and
CTESSEL has been strongly increased over Sahel, the
rescaling process improves the agreement (in terms of bias)
over savannah and forest. Concerning MODIS, the average
annual bias is improved over Sahel and forest and only
slightly deteriorated over savannah (+0.27 and �0.50 m2/m2

before and after histogram matching, respectively). The bias
at the LAI peak is higher after rescaling for Sahel but
improved for savannah and forest. Concerning the phenology,

the date of peak is not modified by the rescaling process and
differences in the beginning of growth before and after bias
correction does not exceed 6 days on average (i.e., for
CYCLOPES over savannah).
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