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ABSTRACT

A full radar simulator, which works with the 3D output fields from a numerical mesoscale model, has
been developed. This simulator uses a T-matrix code to calculate synthetic radar measurements, accounts
for both backscattering and propagation effects, and includes polarimetric variables. The tool is modular to
allow several options in the derivation of the synthetic radar variables. A measurement uncertainty can be
taken into account on both the simulated reflectivities and the differential phase shift. A scheme can also
be switched on to allow for the gate-to-gate variability of the rain drops size distribution or, also, their
oblateness. This work was done in the framework of the installation in West Africa of a polarimetric X-band
radar for the observation of tropical rain. Accordingly, the first objective pursued with this simulation setup
is a detailed analysis of X-band polarimetric rain retrieval algorithms. Two retrieval schemes, a simple
R–KDP formula and a profiler that uses both reflectivity and �DP, are tested. For that purpose the simulator
is run on a model case study of an African squall line, then the two schemes are used to retrieve the rain
rates from the synthetic radar variables and compare them to the original. The scores of the schemes are
discussed and compared. The authors analyze the sensitivity of the results to the measurement uncertainty
and also to several aspects of drop size distribution and drop shape variability.

1. Introduction

Numerical simulation of weather radar observations
raises the interest of the community for two main rea-
sons: first of all, realistic simulations are convenient for
carrying out detailed sensitivity analyses. With a nu-
merical tool it is easy to analyze independently the dif-
ferent sources of error and uncertainties affecting radar
measurements and retrieval algorithms (Zawadzki
1984; Testud et al. 2000). Focusing only on works that
were concerned with rain estimation, we can give a few
examples of such simulation-based sensitivity analysis.
Fabry et al. (1992) analyzed the influence of radar reso-
lution and range on rain estimation. Sánchez-Diezma et
al. (2000) presented a detailed study, based on simula-
tion, of the visibility of the bright band, according to the
characteristics of volumetric scans. Ryzhkov and Zrnić

(1998) and Gosset (2004) tackled the problem of non-
uniform beam filling (NUBF) of the radar beam and its
effect on the differential phase shift. Gosset and
Zawadzki (2001) and Berne and Uijlenhoet (2005) fo-
cused on the problem of drop size distribution variabil-
ity and NUBF on attenuation correction techniques.
We could also cite the work by Pellarin et al. (2002),
who simulated the interception of the radar beam by
ground targets to analyze its effect on rain estimates in
mountainous regions. The second and more recent
source of interest for radar simulators is linked to the
prospect of radar data assimilation in prediction models
(Caumont et al. 2005; Wu et al. 2000; Xiao et al. 2004).
For that purpose radar operators need to be coded
within the meteorological models. Caumont et al.
(2005) and Haase and Crewell (2000) presented full
radar simulators that they developed within high-
resolution nonhydrostatic models and compared with
real radar observations for validation purposes.

The simulation setup introduced in the present paper
was developed primarily for the analysis of radar rain
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estimators rather than for data assimilation purposes.
However, the simulator is applied to rain fields gener-
ated by a mesoscale model. The idea is to take advan-
tage of the richness of a high-resolution mesoscale
model output and use it as a numerical data bank to
carry out various sensitivity studies. The simulator pre-
sented here mimics radar scans inside the three-
dimensional high-resolution fields issued from the
model. Afterward, rain retrieval algorithms are applied
to this synthetic radar data and the estimated rain fields
compared to the original ones.

The present work was carried out as part of the
preparation of a big field campaign: the African Mon-
soon Multidisciplinary Analysis (AMMA; Redel-
sperger et al. 2006) project. This international program
and field campaign aims at a better understanding of
the African monsoon system, its variability, and its im-
pact on the water resources in West Africa. As part of
this experiment a variety of hydrological and meteoro-
logical instruments have been and will be deployed in
several West African countries (Redelsperger et al.
2006; additional information is available online at
http://amma-international.org), to document the physi-
cal processes and quantify the different terms of the
water budget over a range of scales. As part of the
three-years-long enhanced observing period (EOP) an
X-band polarimetric radar, Xport (Cazenave et al.
2006), has been set up by the Institut de Recherche
pour le Développement (IRD) in northern Benin to
monitor and estimate rainfall over a small, well-
instrumented watershed. The primary aim of our simu-
lator and of the study presented in this paper is to an-
ticipate the behavior of such an X-band radar in typical
African rainfall. We also wanted to carry out detailed
sensitivity analysis on several rain retrieval algorithms
planned to be used on our polarimetric X-band radar.

Several authors have proposed in the recent years the
use of X-band radar for rain estimation (Sauvageot
1996; Matrosov et al. 1999, 2002, 2005; Testud et al.
2000; Anagnostou et al. 2004; Park et al. 2005a,b). In
circumstances where long-range coverage is not essen-
tial, such radar offers the advantages of lower cost,
compactness, and transportability over traditional S- or
C-band systems. The renewed interest for X-band radar
is mainly due to polarimetric techniques that offer new
ways to overcome the problem of partial attenuation by
rain. Several methods have been proposed to do so.
Sauvageot (1996) presented a method based on the
measurement of the differential reflectivity ZDR and an
iterative estimation of the differential attenuation ADP

to estimate the rain rate. Other authors (Matrosov et al.
1999, 2002, 2005; Testud et al. 2000; Anagnostou et al.
2004; Park et al. 2005a,b) exploited the quasi-linear re-

lation that exists between the differential phase shift
and the path-integrated attenuation. A few experi-
ments have confirmed the potential usefulness of these
approaches (Matrosov et al. 2005; Park et al. 2005b;
Anagnostou et al. 2004). However, as the proposed
techniques and instrument are new, the experimental
tests are limited to a few case studies and the ground
validation is too limited to have a robust evaluation of
the performance. The cited authors, on the other hand,
have made an effort to test their algorithms using simu-
lations. However, these individual studies tend to have
different starting assumptions and also tend to focus on
one specific aspect of the problem. This makes it diffi-
cult to compare their results. In Sauvageot (1996), for
instance, the coefficients of the relationships between
the various radar parameters and between differential
reflectivity and rain are fixed, and the scheme is sup-
posed to correct mainly for miscalibration. Matrosov et
al. (2005), following Gorgucci et al. (2000, 2001), inter-
preted the variability between the radar polarimetric
variables as an indication of changes in the aspect ratio
of the drops within the storm. The method proposed by
Testud et al. (2000) interprets the variability in term of
changes in one parameter of the drop size distribution
(DSD): the normalized intercept parameter N0. It
should be noted that none of these studies, including
the very comprehensive one by Testud et al. (2000),
consider the stochastic aspect of DSD variability.

This paper examines the various terms that influence
the X-band polarimetric rain estimators and compares
their weight in the final result. For this, we compare at
the same time and with the same simulation setup sev-
eral sources of uncertainties, which are (i) the natural
variability of the drop size distribution both from storm
to storm and within a storm, (ii) the shape of drops and
its variability, (iii) the temperature of the medium, (iv)
the range of rain rates and their distribution within the
storm, and (v) measurement uncertainties.

Because of the targeted application, we focus on a
warm tropical environment with medium to heavy rain-
fall rates. Also, we deal only with rain estimators that
use the differential phase shift �DP or its derivative
KDP, and we focus on the X-band, which is the operat-
ing frequency of our radar. To achieve the objectives
above, the radar simulator uses as input fields, those
generated by the mesoscale model Meso-NH (Lafore et
al. 1998) run for a case study of a West African squall
line.

Section 2 describes the radar simulator and explains
how it uses the output from the model. Section 3 pre-
sents several X-band rain estimators and analyses the
variability of the polarimetric radar variables and of
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their relationship to rain. In section 4, we use the simu-
lation setup to quantify the effect of these various un-
certainties on the skills of the two selected retrieval
schemes. The scores of the retrieval schemes are com-
pared and the results also analyzed as a function of the
range of rain rates considered. We close the discussion
and present our perspectives in section 5.

2. Simulation setup

This section presents the various steps and modules
used to produce the synthetic radar data from the me-
soscale model output fields. The core of the radar simu-
lator is a T-matrix code (Mishchenko and Travis 1998),
which is used to calculate the scattering properties of
individual drops modeled as oblate spheroids. Then, for
each radar gate, the scheme performs the integration
over the DSD. Finally, the propagation parameters are
integrated in range and a measurement uncertainty can
be added to output the synthetic radar “measure-
ments.” The details of the whole scheme are given be-
low (and summarized in the diagram in Fig. 4).

a. Step 1: From model’s mixing ratios to DSDs and
radar intrinsic variables

The model output fields of interest for us are the
mixing ratios (Fig. 1). In the model version we use,

three types of frozen hydrometeors (ice, snow, and
graupel) and two types of liquid hydrometeors (cloud
water and rain) are represented. The results presented
in this paper are only for low-elevation scans in a warm
environment, so that only the mixing ratio for rain is
useful. These variables are provided on the three-
dimensional Cartesian grid of the model. Once the po-
sition of the radar in that grid is set, the interpolation
scheme developed at Météo-France by Caumont et al.
(2005) is used to provide us with data on a polar grid,
with the following coordinates: the distance to the ra-
dar, the elevation, and the azimuth angles. Unlike in
Caumont et al. (2005), our radar simulator is totally
external to the mesoscale model. This offers more flex-
ibility, and allows us to add, for instance, a random
variability to the drop size distribution, as will be ex-
plained below. Once the model data of interest (i.e., the
mixing ratios and air density) are extracted, they are
converted into a water content profile along each ra-
dial. The next step is to associate a drop size distribu-
tion at each radar range gate. To derive a DSD from the
liquid water content (LWC) several assumptions need
to be made. In the Meso-NH model microphysics
scheme, for instance, the DSD is exponential with the
intercept parameter set by default to the Marshal–
Palmer value (8000 m�3 mm�1). For our radar simula-
tions, however, we chose to have more flexibility and
we adopt three-parameter normalized gamma distribu-

FIG. 1. Example of a vertical slice in an African squall line generated by Meso-NH. The
numbers on the contours indicate hydrometeor mixing ratios, used as an input for the radar
simulator. The shaded areas represent the reflectivity factors (dBZ ) calculated by the model.
The y axis indicates the vertical level number in the model. The separation between solid
(above around level 18) and liquid hydrometeors is visible, on both the reflectivity and mixing
ratio contours.
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tions (Testud et al. 2001; Illingworth and Blackman
2002):

n�D� � N0

��4��3.67 � ��4��

3.674��4 � ��
�D

D0
��

exp��
�3.67 � ��

D0
D�,

�1�

with n(D) (mm�1m�3), D in mm, D0 is the median
volumetric diameter, � the shape parameter of the
DSD, and N0 (mm�1m�3) is a characteristic number,
equal to the intercept parameter of the exponential
DSD (� � 0) having the same water content. Here N0

is expressed at each gate as a function of the water
content:

N0 �
1096�LWC�3.674

�w���4�D0
4 , �2�

with the water content LWC (kg m�3) and the density
of water �w (kg m�3).

The DSD is derived at each radar gate, from the
LWC, using Eqs. (1) and (2) and assumptions have to
be made about the values of N0 and �. We keep, as our
reference configuration, � equals 0 and N0 set to 8000
m�3mm�1, but we can also impose a different value of
N0, either for the entire simulation or by imposing a
gate-to-gate variability of N0 as illustrated in Fig. 2 and
further discussed in section 4. Once the DSD is set, the
radar intrinsic parameters at each gate are calculated,
by integrating over the DSD, the individual scattering
functions (see, e.g., Bringi and Chandrasekar 2001, for
the definition of the scattering functions and the calcu-
lations of the radar variables) calculated with a T-
matrix code (Mishchenko and Travis 1998). By intrinsic
parameters we mean the reflectivity factors for both
horizontal and vertical polarization, both specific at-
tenuations AH and AV, the specific differential phase
shift KDP, and the phase shift on backscattering, 	. It is
noteworthy that at this stage the minimum and maxi-
mum diameters (Dmin and Dmax) over which the inte-
gration is performed, can be adjusted, for instance to
study the effects of truncation or conversely of “big
drops” (Carey et al. 2000). The default values are from
0.1 to 5 mm in 0.1 mm steps.

An example of the range profiles of water content,
DSD parameters, and intrinsic variables is illustrated in
Figs. 2 and 3.

b. Step 2: From radar intrinsic variables to synthetic
measurements

At this stage, the propagation parameters (specific
attenuation and specific phase shift) are integrated

along the path to calculate the attenuated reflectivities
and differential phase shift at range r. The equation in
dBZ is

Zim�r�dBZ � Zi�r�dBZ � 2�
0

r

Ai�s� ds, �3�

with I � H or V indicates the polarization, and AH,V is
in dB km�1.

The differential phase shift at each gate is calcu-
lated by

�DP�r� � 2�
0

r

KDP�s� ds � ��r�; �4�

�DP is in degrees, KDP is the specific differential phase
shift (° km�1), and 	 the differential phase shift on
backscattering (°).

To take into account a realistic radar coverage, a
radar minimum detectable reflectivity (MDR)—below
which the reflectivity is ignored—is also chosen, ac-
cording to the characteristics of the radar to be simu-
lated.

At this stage a measurement uncertainty can be
taken into account, both on the reflectivity and on the
phase shift.

For the reflectivity, the uncertainty is modeled as an
additive (dBZ) random error 
Z. This error is normally
distributed (Gaussian) over the entire scan and uncor-
related from gate to gate or from radial to radial (in
practice this is implemented in the code with a random
generator that uses the Box–Muller method). The stan-
dard deviation of 
Z, �
Z

, is chosen by the user. We
usually set it to 1 dBZ, which is the classical value found
in the literature for standard radar characteristics and
postprocessing. Profiles of intrinsic reflectivity (ZH)
and the corresponding “measured” reflectivity with an
uncertainty �
Z

of 1 dBZ, are presented in Figs. 3a,c.
For the phase shift �DP the uncertainty function is

also additive. It is constructed to take into account the
degradation of the phase signal when the signal-to-
noise ratio (SNR) decreases. When the SNR is high (in
practice for ZHm-MDR above a given threshold), the
error is normal with a standard deviation �
�

. When
ZHm is low compared to the MDR, the differential
phase signal should be dominated by the one of noise
and be uniformly distributed over (��, �). This is done
by adopting the following equation:

�DPm � 
�DP � �� f�SNR�� MOD�, �5�

with 
� a normally distributed variable with standard
deviation �
�

. The function f(SNR) is equal to 1 when
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the SNR is high and rises sharply when the SNR de-
creases. The MOD “modulo” sign ensures that if the
expression in bracket rises above � it is folded back
between �� and �. We adopted the following expres-
sion for f(SNR) � exp�50{1 � exp
�(0.03/100.1(SNR))]}�,
with SNR equal to (ZHm-MDR) in the simulator. An
example is given in Fig. 3d, where two profiles of �DP

are displayed, one without (dash line) and one with
uncertainty (�
�

� 2°) added as in Eq. (5). It can be
seen that, after 50 km, when the reflectivity falls below
the MDR, �DP is extremely variable as expected for
noise. As for the modeled uncertainty in Z, the uncer-
tainty in �DP is uncorrelated from gate to gate or radial
to radial.

(An example of simulated radar data, together with
the original rain field, is illustrated in Fig. 9.)

For the radar data simulated in this paper the simu-
lated radar has the following characteristics:

• Given that the horizontal resolution of the model
output used here is only 2.5 km, there was no in-
terest in simulating too high a resolution, so the radial
resolution is 1 km and the radials are taken every
1.2°.

• The MDR at 10 km is �15 dBZ (a reasonable as-
sumption for an X-band radar transmitting at 100
kW, with an antenna gain of 42 dB—beamwidth
1.2°—and a pulse width of 1 �s). We also carried out

FIG. 2. Example along a given radial, of (a) the range profiles of water content; (b), (c), (e)
the intercept parameter N0; (d) and the slope of the DSD, calculated by the simulator at step
1. Here (b), (c), and (e) illustrate the various options that can be used to set N0, as a fixed
value, lognormally distributed around its mean or with parameterized jumps.
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tests with a higher value of MDR for the discussion
on the maximum detection range presented in sec-
tion 4e.

• The frequency used is 9.4 GHz.

Radar rain retrieval algorithms can now be tested on
these variables and the result compared with the origi-
nal rain profiles (Fig. 4). An example of rain retrieval
for a given realization of the simulator and the same

FIG. 3. (a), (b) Intrinsic variables and (c), (d) synthetic measurements produced by the
simulator at step 2, for the water content profiles of Fig. 2. The variables are (a) the rain rate
R and the intrinsic reflectivity in horizontal polarization ZH; (b) the specific (KDP) and
backscattering (	) differential phase shift; (c) the synthetic “measured” reflectivity ZHm, su-
perimposed on the minimum detectable reflectivity MDR; (d) the synthetic “measured” dif-
ferential phase shift, with (plain line) or without (dashed line) the measurement uncertainty
module turned on. For this example the std dev in the error in Z is equal to 1 dBZ, and the
std dev in �DP is equal to 2°.
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profile as in Figs. 2 and 3 is given in Fig. 5. The details
of the retrieval schemes are given in section 3.

3. Rain retrieval schemes and natural variability of
their coefficients

As discussed in the introduction, several schemes
that use polarimetric radar variables have been pro-
posed recently—and some of them tested—at X band.
These schemes use one or a combination of the mea-
sured variables ZH, �DP, or ZDR. Sauvageot (1996) pro-
posed a method that uses both reflectivity in one chan-
nel—say, ZH—and the differential reflectivity ZDR.
The scheme matches two independent estimates of the

rain profile (one obtained from ZH the other one from
ZDR, both corrected for attenuation by an iterative pro-
cess) and adjusts the radar calibration. Smyth and Ill-
ingworth (1998) evaluated of the path attenuation
through an estimate of the differential attenuation at
the far side of a cell. It is assumed that “behind” a cell
the rainfall is low and ZDR should be zero so that a
negative ZDR is an indication of differential attenua-
tion. Matrosov et al. (2005) also make use of ZDR in
their scheme. In their method the rain drops aspect
ratio is parameterized and the oblateness retrieved via
a power-law combination of ZDR, KDP, and ZH. The
scheme leads to an estimate of the rain rate supposed to
be immune to the drop shape variability. However, we

FIG. 4. This diagram summarizes the simulation setup and its use for analyzing rain retrieval schemes.
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decided for the present study to concentrate on the
schemes that use only the differential phase shift �DP

and the reflectivity in one channel. The first reason is
that we find that the relationship between ZDR and
other variables is dependent on too many factors (drops
shape, DSD shape, spectrum maximum diameter, tem-
perature, range of rainfall rates considered) to bring
unambiguous information. The fact is well illustrated
on the Fig. 6f, where it is seen that ZDR is highly sen-
sitive to the oblateness law of drops and also more
sensitive than any of the other parameters to the shape
of the drop size distribution (parameter �) and also to
the maximum diameter considered in the distribution
(parameter Dmax). We find also that the Smyth and
Illingworth (1998) scheme might be difficult to imple-
ment at X band because of the limited range. All these
factors made us restrict our preparatory study to the
schemes that use either only �DP or a combination of
�DP and ZH.

a. Scheme 1: Direct use of a R(KDP) relationship

It has been shown by many authors (Brandes et al.
2001; Bringi and Chandrasekar 2001; Matrosov et al.
1999) that the specific differential phase shift and the
rain rate are well correlated and that their relationship
is less sensitive to DSD variability than the classic Z–R
relationship. Here KDP is also immune to attenuation
and unaffected by calibration and beam blockage. It is
also known that one problem in the direct use of a
R–KDP relationship is that KDP is estimated in practice
by differentiating the “noisy” variable �DP, leading to a
lack of precision. Several authors (Matrosov et al. 1999,

2002; Testud et al. 2000) have pointed out, however,
that the problem is less acute at high frequencies, be-
cause for a given rain rate, KDP increases approxi-
mately as the frequency and is a stronger signal at X
band than at S or C band. In addition to the noise in
�DP, the other problem that might affect the estimation
of KDP is the contribution of the scattering phase shift
	 as well as the effects of cross-beam gradients (Ryzh-
kov and Zrnic 1998; Gosset 2004). However, the mea-
surements that have been made at X band (Matrosov et
al. 1999, 2002; Anagnostou et al. 2004) show no evi-
dence of strong 	 contamination on real data.

To implement this scheme on our synthetic data, KDP

is estimated by running a least square linear fit over the
values of �DP from a number N of consecutive gates,
where N can be chosen.

In theory KDP is positive. This is assumed when using
a simple power-law relationship to retrieve the rain
rate. However, the noise in �DP can produce negative
values of KDP. To avoid introducing a positive bias by
suppressing only negative spurious KDPs, we use the
formulation proposed by Sachidananda and Zrnić
(1987):

R � sign�KDP�aR�Kdp
|KDP |bR�Kdp, �6�

with R in mm h�1, the function sign is equal to 1 for
positive numbers and �1 otherwise. Here aR–Kdp and
bR–Kdp are the coefficient and exponent of the power-
law relationship between R and KDP. Their value at X
band and their variability are discussed below in the
section 3c and illustrated on the Fig. 7d.

b. Scheme 2: Correction attenuation using �DP and
ZH

The other type of usage that has been proposed for
�DP is to exploit the high correlation between �DP mea-
sured between two range gates, and the attenuation
integrated over the same path (Bringi and Chan-
drasekar 2001; Matrosov et al. 2002, 2005; Testud at al.
2000; Park et al. 2005a,b). As discussed by several au-
thors (Bringi et al. 1990; Testud et al. 2000; Matrosov et
al. 2002, 2005) and illustrated in Figs. 6a and 7a, the
relationship between KDP and the specific attenuation
AH (for horizontal polarization) is quasi-linear so that
the path-integrated attenuation (PIA) can be approxi-
mated from the path-integrated �DP with a relationship
of the type:

PIA�r1, r2� � aA�Kdp

�DP�r2� � �DP�r1��, �7�

where r1 and r2 are the first and the last range of the
path integration. The advantage of such a use is that
�DP does not need to be differentiated.

FIG. 5. Example of the rain profiles retrieved after application
of the two retrieval schemes R(KDP) and R(Z, �DP)opt on the
synthetic radar variables of Fig. 3.
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FIG. 6. Illustration of the variability of the relationships between couples of variables: (a)
AH–KDP, (b) AH–ZH, (c) R–AH, (d) R–KDP, (e) ZH–R, and (f) ZDR–R. The calculations are
made with a T-matrix code for normalized gamma distributions. Three oblateness laws cited
in the text are used and labeled as Andsager, Goddard, and linear. The default values for the
DSD are shape parameter � � 0, maximum drop diameter Dmax � 5 mm, oblateness law at
Andsager, and temperature T � 5°. The curves with symbols are for the three oblateness laws,
as indicated, and the default values of T and �. The dash and long-dash line are for the default
oblateness law and �, and two values of T: �10° (short dash); 20° (long dash). The three-
dotted–dash line is for the default values of oblateness, Dmax and T, but � � 2. The plain line
is for the default DSD and oblateness but with the maximum diameter Dmax � 7 mm.
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From this principle several schemes have been pro-
posed. In Matrosov et al. (2002, 2005), the values of ZH

and ZDR at each gate are corrected using the value of
�DP and Eq. (7) and a similar one between the differ-
ential attenuation and �DP. Then, the rain rate is esti-
mated from a combined polarimetric estimator as a
function of KDP and of the corrected ZH and ZDR.

Testud et al. (2000) and Anagnostou et al. (2004) use
a different approach. Once the PIA is estimated from
(7), the rain rate at each gate along the path is retrieved
with a profiling technique such as the ones used for
space radars (Marzoug and Amayenc 1991).

The basic principle of such algorithms is the existence
of a power-law relationship,

FIG. 7. Illustration of the variability of the coefficients a and the exponent b, of a Y � aXb

fit on the curves of Fig. 6. The calculations are for two ranges of R: 0.1–50 mm h�1 in black
and 20–90 mm h�1 in light gray. As in Fig. 6, the symbols are for the three oblateness laws and
the line between the symbols indicates the value of T and/or the value of �.
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AH � aA�ZZbA�Z, �8�

between the specific attenuation and the reflectivity. It
has been demonstrated (Hitschfeld and Bordan 1954;
Marzoug and Amayenc 1991) that such an assumption
and Eq. (3) lead to the following integral equation be-
tween the intrinsic and measured reflectivities, between
two radar ranges r1 and r2:

�Zm �dC

Z �b

�r2� � �Zm �dC

Z �b

�r1� � �0.46aA�ZbA�Z

�
r1

r2


Zm�s� �dC�bA�Z ds, �9�

with dC, a miscalibration factor, set to 1 if the calibra-
tion is thought to be correct, and which can be retrieved
by the scheme otherwise [see Eq. (12) below]. Noticing
that the ratio of measured to intrinsic reflectivities, on
the left-hand side, is a function of the PIA, the follow-
ing expression is derived for the specific attenuation
factor at range r:

A�r� �
Zm

bA�Z
10bA�Z0.1PIA�r1,r2� � 1�

�I�r1,r2� � I�r,r2�
10bA�Z0.1PIA�r1,r2� � 1��
, with

�10�

I�r1,r2� � 0.46bA�Z�
r1

r2

Zm�s�bA�Z ds. �11�

As noticed before (Marzoug and Amayenc 1991;
Testud et al. 2000), such an estimate of A(r) is inde-
pendent of the aA�Z coefficient and immune to calibra-
tion problems. If the PIA is expressed as a function of
�� � �DP(r2) � �DP(r1) as in (7), then we retrieve the
expression of Testud et al. (2000) or Anagnostou et al.
(2004).

Once the specific attenuation is estimated at each
gate, the rain rate can be derived from an R–A rela-
tionship.

It is also noteworthy that if the PIA at range (r1) is
known (or best, equal to 0), Eq. (9) provides a con-
straint to adjust dC or aA–Z (depending which assump-
tion is made):


10�bA�Z0.1PIA�O,r11� � 10�bA�Z0.1PIA�O,r2��

I�r1,r2�
�

aA�Z

dCbA�Z
.

�12�

If, in addition, it is assumed that the calibration is
correct (dC � 1) and that aA–Z depends only on N0 (as
in Testud et al. 2000 and Anagnostou et al. 2004), then
Eq. (12) can be used to estimate N0 along the (r1, r2)
path. In this case, the coefficient aR–A corresponding to
the adjusted N0 can be used for the rain retrieval.

c. Natural variability of the radar variables and the
power-law relationships

The rain retrieval schemes presented above are
based on power-law relationships between two radar
variables or between one radar variable and the rainfall
rate. Some analysis of the variability of these relation-
ships has been done by the authors who proposed the
schemes used at X band (Matrosov et al. 1999, 2002;
Park et al. 2005a,b) and especially in the comprehensive
work by Testud et al. (2000). However, some aspects,
such as the range of rain rates considered to derive the
coefficients, the occurrence of big drops in the sampled
volume, or the temperature dependence, are treated
only partially at X band—they have been discussed
more comprehensively for the C band (Zrnic et al.
2000; Carey et al. 2000). Also, the oblateness laws used
by the various authors are not the same. In addition, as
noticed by Illingworth and Blackman (2002), the deri-
vation of such relationships is very sensitive to the
model and parameterization of the DSD, so it is better
to compare the various sources of variability at the
same time and with the same model.

The “natural” variability of the following relation-
ships—AH–KDP, AH–ZH, R–AH, R–KDP—used by the
two selected schemes, is illustrated in Fig. 6. We also
present the classical Z–R and the ZDR–R relationship
for reference. For these plots we used a T-matrix code
for the properties of individual drops and then inte-
grated over the DSD. The DSD is a three-parameter
normalized gamma distribution [Eq. (1)] with N0 set to
8000 mm�1 m�3. The default is to perform the integra-
tions between Dmin � 0.1 and Dmax � 5 mm in 0.1-mm
steps. Plots are also presented with the parameter Dmax

set to 7 mm to study the influence of bigger drops in the
spectrum. In Fig. 6 the calculations were performed for
three temperatures: 5°—the default, �10°, and 20°,
consistent with our tropical application, and for two
values of �: 0 and 2. We tested three drop oblateness laws:

• The one proposed by Andsager et al. [1999, their Eqs.
(1) and (3)].

• The one cited by Illingworth and Blackman [2002,
Eq. (15)] and originally proposed by Goddard et al.
(1995), which is based on disdrometer and radar data
comparisons.

• A linear shape [Matrosov et al. 2005, their Eq. (3)]
with an adjustable parameter � set to 0.062 mm�1 by
default. In section 4 we experiment by varying the �
parameter within the radials as it might vary accord-
ing to some authors (Gorgucci et al. 2000, 2001).

The multiplicative coefficients a and the exponents b
obtained by linear fit of the curves of Fig. 6 are given in
Fig. 7.
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It is noteworthy that the different relationships show
very different dependences on the parameters we
tested. As expected, only the relationships that apply to
differential polarimetric parameters show a depen-
dence on the oblateness law. Only the two relationships
involving the specific attenuation AH show a relatively
strong dependence on temperature, and it is more
marked for the AH–KDP relationship. The relationships
involving Z or ZDR show a strong sensitivity to the
shape of the DSD, and so does the AH–KDP but to a
lesser extent. As expected from the change of slope of
the curves represented in Fig. 6, the results of the linear
fit are very sensitive to the range of rain rates used for
the fit. This is generally true for the multiplicative fac-
tor a as well as for the exponent b. This should be kept
in mind when choosing the coefficients for a given ap-
plication (i.e., tropical rainfalls for our purpose). This
also encourages caution when manipulating formulas
that assume that the exponent b can be fixed.

The AH–KDP relationship is very sensitive to the ob-
lateness law and to the temperature, with a strong de-
pendence on the range of rain rates considered. How-
ever, when this relationship is used to derive the PIA
from the path-integrated �DP, the contribution of all
the rain rates are averaged by the range integration, so
that we expect the relationship between PIA and �DP

to be more stable than suggested by the Figs. 6a and 7a.
The A–Z relationship (here AH–ZH) is also variable,

but its exponent is mostly stable. As the retrieval of the
specific attenuation using Eq. (10) uses only bA–Z it is
not affected by the A–Z variability. However, Figs. 6b
and 7b show that the coefficient aA–Z varies with tem-
perature, as well as with � and the median diameter (or,
in Fig. 6, the rain range as we work with a fixed N0). We
have also tested the sensitivity of the relationships to
the bigger drops of the DSD, by modifying the maxi-
mum diameter of integration, Dmax, from 5 to 7 mm.
We found that the A–Z relationship was very sensitive,
with a change of 50% in aA–Z. This means that inter-
preting the variability of aA–Z as an indicator of N0

variability (Testud et al. 2000; Anagnostou et al. 2004)
can be erroneous.

The R–AH relationship is the most stable, both in a
and b. As stated before, the plot is for N0 � 8000 m�3

mm�1. For another value of N0, the coefficient aR–A

would be multiplied by (N0/8000)(1�bR�A), with (1-bR–A)
close to 0.15, according to Fig. 7c. As an example, if N0

is multiplied by 2, on average, the change in aR–A is only
by 10%.

As a summary, we expect that, in the profiler scheme
R(Z, �DP), the main source of uncertainty will be the
estimation of the PIA from �DP. To reduce that uncer-
tainty, we will try to estimate the PIA over long rather

than short paths. For that reason, and also because of
the sensitivity of aA–Z to factors other than N0 and be-
cause of the fact that R–AH is very stable, we will not
try to apply N0 tuning or partitioning in our scheme.

The R–KDP relationship shows very little dependence
on temperature, DSD shape, and the existence of di-
ameters bigger than 5 mm, but it does vary a lot ac-
cording to the range of rain rates considered, and of
course according to the oblateness law. This is why
some authors try to determine the oblateness from trip-
lets of (ZH, ZDR, KDP) and then apply a parameterized
R–KDP relationship (Matrosov et al. 2005).

Figure 6f shows that the R–ZDR relationship is only
mildly dependent on temperature, but it is very sensi-
tive to the drop oblateness law and extremely sensitive
both to the DSD shape (parameter �) and to the exis-
tence of drops with diameters above 5 mm. This, to-
gether with the difficulties of correcting for differential
attenuation, made us choose not to use ZDR, as the
information contained in that variable is difficult to in-
terpret quantitatively without ambiguity.

As discussed for many years in the literature, the
R–Z relationship is variable, and depends on tempera-
ture and DSD shape but only slightly on the mean di-
ameter (illustrated here by the insensitivity to the rain-
fall rate range), as illustrated in Figs. 6e and 7e. As we
generated the curves with a fixed value of N0 the ex-
ponent is stable and close to 1.6 (thus similar to the
value for S band, in the Rayleigh regime). With a simi-
lar reasoning to the above, we find that a change in N0

means that aR–Z is multiplied by (N0/8000)�0.6. For in-
stance, a doubling of N0 means that aR–Z is reduced by
35%. In our scheme we will not use the R–Z relation-
ship. In both the schemes we chose to use, the final
estimation of the rainfall rate R is based on propagation
parameters—that is, AH in the case of the R(Z, �DP)
scheme and KDP for the R(KDP) scheme—whose rela-
tionships to R are shown to be more stable than for the
backscattering parameters (Figs. 6 and 7).

4. Sensitivity tests

In this section, we use the simulation setup described
in section 2 to carry out sensitivity tests on the two
algorithms presented in section 3.

a. The numerical dataset

The dataset comes from an explicit simulation of a
squall line using the mesoscale numerical model Meso-
NH (Zahiri 2007; Diongue et al. 2002). An intense
squall line—actually observed during the 1992 Hydro-
logical Atmospheric Pilot Experiment (HAPEX) Sahel
campaign (Goutorbe et al. 1994)—is simulated. A grid
nesting method is used to keep the benefit of a cloud-
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resolving model resolution. The high-resolution model
has a 2.5-km horizontal resolution and covers an area of
about 800 km � 800 km.

The radar was positioned in two locations within that
domain, and in each position 12 plan position indicator
(PPI) scans, 5 min apart, were simulated. The distribu-
tion of the rain rates in the area covered by each “ra-
dar” for the 2 h of exploration is illustrated in Fig. 8a.
To qualify the numerical dataset, the distribution of
radar observed PIA is also given in Fig. 8b. For both
areas and especially for the southern one [Sudanese
mesoscale convective system (MCS)], intense precipi-
tations are sampled, as shown in Fig. 8. Over the dif-

ferent radials a good variety of PIA or rain rates is
sampled.

An example of the synthetic radar data, with the
original rain field, the simulated reflectivity (ZH), and
the differential phase shift (�DP), is given in Fig. 9. This
is obtained with the radar configuration described in
section 2: the radar frequency is 9.4 GHz, the mini-
mum detectable reflectivity (MDR) is set to �15 dBZ
at 10 km, the range resolution is 1 km, and the radials
are 1.2° apart in azimuth. The effect of the strong at-
tenuation of the radar wave by rain, at X band, is visible
on the simulated reflectivity (Fig. 9b): the rain cells
located beyond 50 km from the radar, to the east, have
a reflectivity below the MDR and do not appear on the
ZH field. The disappearance of these cells due to at-
tenuation is also visible on the �DP pattern (Fig. 9c),
which is very noisy because the signal is below detec-
tion.

b. Options for the direct model

As explained in section 2, the simulator is modular
and several options can be chosen for generating the
synthetic radar data.

1) REFERENCE MODEL

For the default or reference simulation, the DSD for
each gate is calculated with Eqs. (1) and (2), and the
value of the intercept parameter N0 is set to 8000
mm�1m�3, as it is in the Meso-NH microphysical
scheme. The default oblateness law is the one by And-
sager et al. (1999). The measurement uncertainty is
switched off. This is the synthetic dataset on which we
expect the algorithms to work best.

2) MEASUREMENT UNCERTAINTY

For our dataset, the MDR is set to �15 dBZ at 10
km, as mentioned before. When the measurement un-
certainty option is switched on, the standard deviation
of the error on Z {�
Z

, defined in section 2b is set to 1
dBZ, and the one on �DP [�
�

, Eq. (5)] is set to 2°}.

3) GATE-TO-GATE VARIABILITY OF THE DROP

ASPECT RATIO

Several studies (Gorgucci et al. 2000, 2001) have sug-
gested that the mean oblateness of drops might vary
from gate to gate. Even though such an idea is not
consensual in the weather radar community, it is inter-
esting to test this effect on the retrieval schemes. The
gate-to-gate variability of the aspect ratio is imposed
here with a very simple model. The linear oblateness
law defined by an aspect ratio ra equal to ra(D) � 1. �

FIG. 8. Main characteristics of the precipitation fields the virtual
radar is scanning, for two positions of the radar, which are labeled
Sahelian and Sudanese. (a) The probability distribution of the
rain rate is illustrated. (b) The distribution of the values of the
PIA, over all the radials of the 12 PPIs of each zone, is illustrated.
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�(0.5 � D) for D above 0.5 mm is adopted, and � can
take any value among (0.052, 0.057, 0.062, 0.067, 0.072).
The values of � are decorrelated in range and from one
radial to the next.

4) OCCURRENCE OF LARGE DROPS IN THE RADAR

RESOLUTION VOLUME

The default value of the maximum diameter consid-
ered for the integration over the drop size spectrum is
set to Dmax � 5 mm. Most of the disdrometers available
currently (Miriovsky et al. 2004) do not measure drops
above this size. However, Carey et al. (2000) have ob-
served that the coefficient of proportionality between
KDP and the specific attenuation (our aA–Kdp) was
stronger than predicted from calculations and pointed

out the possible influence of the larger drops of the
spectrum. To study the sensitivity of the algorithms to a
discrepancy between the actual drop spectrum width
and the one that was assumed when setting the coeffi-
cients (aA–Z, bA–Z, aA–Kdp, aR–A, bR–A, aR–Kdp, bR–Kdp),
we include drops up to Dmax � 7 mm in our direct
model. (The corresponding simulation is labeled “big
drop” on the Figs. 12–17.)

5) GATE-TO-GATE VARIABILITY OF THE

INTERCEPT PARAMETER: PARAMETERIZED N0

JUMP OR NORMAL DISTRIBUTION

A gate-to-gate variability of N0 can be introduced,
still respecting the water content constraint [Eq. (2)].
Two models of variation are envisaged:

FIG. 9. Example of PPI scans generated by the radar
simulator for the Meso-NH case study described in the
text. The illustration is for one PPI, for the radar in the
Sudanese zone, and the variables are the (a) R, (b)
synthetic reflectivity in polarization H (with the attenu-
ation and the measurement uncertainty modules turned
on), and (c) differential phase shift.
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• The N0 “jump” as reported by several authors (Wald-
vogel 1974; Uijlenhoet et al. 2003): this is set by im-
posing a jump of N0 from the default value, whenever
the water content is above a given threshold. From
observations, it was decided to impose a value of
N0 � 16000 m�3 mm�1 for LWC greater than 1 g m�3

(as in Fig. 2e).
• The N0 gate-to-gate random variability (as in Fig. 2c):

that model is close to what is actually observed with
disdrometers. A random number generator (Box–
Mueller method) and an auto-regressive scheme (or-
der 1) are used to impose the probability density
function (pdf) of N0 over the entire scan and its spa-
tial correlation. A decorrelation distance is imposed
only along the range axis, while the radials are deco-
rrelated.

An example of the pdf of the logarithm of N0 is illus-
trated in Fig. 10a. It can be seen that it reproduces well
a Gaussian pdf. Figure 10b illustrates the decorrelation
of N0 with distance (here with a decorrelation distance
of 6 km). We tested two values for the decorrelation
distance (2 or 6 km). It can be seen in Fig. 10b that the
scheme respects well the exponential decorrelation
model.

Note that whatever the direct model, we always use
at each gate the temperature of the mesoscale model at
the corresponding level; so the effects of the variability
of temperature within the PPI is always included. How-
ever this effect is weak in our case because we use
low-level PPI and a short range.

We tested several combinations of the options above
but for this work we focus only on the four models
obtained by switching on the options one at a time; they
are summarized in Table 1.

c. Options for the retrieval schemes

The two schemes proposed in section 3—that is,
the profiling approach R(Z, �DP), as in Eq. (10),
and the direct use of a R–KDP relationship, as in
Eq. (6)—are applied to the five sets of synthetic data
obtained with the options above (see Table 1). For
the results presented here the R(KDP) scheme is im-
plemented by calculating KDP by linear fit over five
gates.

To implement the schemes we need to set the initial
value of the parameters, that is, the four coefficients
bA–Z, aA–Kdp, aR–A, bR–A for the scheme R(Z, �DP) and
the coefficients aR–Kdp, bR–Kdp for the R(KDP) scheme.
The usual method for setting initially these coefficients
is by best fit, through values of ZH, AH, KDP, and R
calculated for DSDs of the type expected (or already

measured) in the region of interest. This is what we call
setting the inverse model.

The natural variability of rainfall characteristics af-
fects the adequacy of the inverse model in two ways: (i)

FIG. 10. Illustration of the N0 random variability module. (a) An
example of distribution of the log(N0) over all the gates of a given
PPI is shown, superimposed on the Gaussian distribution of same
mean and std dev. (b) The decorrelation of N0 with range (here
with a decorrelation distance of 6 km) is shown, superimposed on
the exponential model.
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As discussed in section 3 and by other authors (Berne
and Uijlenhoet 2005) and visible in Fig. 6, the coeffi-
cients obtained by best fit are suited “on average,” but
they are not exact for the specific DSD observed at
each gate or for the entire range of rain rates that might
be observed. So, even if the drop shape, DSD shape,
and N0 are known, and the coefficients calculated ac-
cordingly, the inverse model is still imperfect. This is
enhanced in the simulations where not only the rain
rate but also N0, the spectrum width, or the drop shape
vary within the scans (as described in section 4b, op-
tions 3–5, above). In addition, in our direct model, the
temperature varies within the scan as in Meso-NH. (ii)
The other way the inverse model can mismatch the
direct one is when the average characteristics of the
DSDs are set erroneously. This will be tested by calcu-
lating the initial coefficients on DSDs that have differ-
ent characteristics (oblateness law, parameter �, and
N0) than the ones of the direct model.

Once the options for the oblateness law, the DSD
shape, and the temperature are selected, the coeffi-
cients (aA–Z, bA–Z, aA–Kdp, aR–A, bR–A, aR–Kdp, bR–Kdp)
are calculated as in section 3c, by a linear fit over the
chosen range of rain rates. As bA–Kdp is forced to 1 in
our scheme, we calculate aA-Kdp by fitting directly a
linear function AH � aA–Kdp KDP. To optimize the
choice of aA–Kdp, which was shown in section 3c to be
very variable, we can also calculate it by fitting a
function, PIA � aA–Kdp �DP, over the path-integrated
values of attenuation and differential phase shift, of
all the radials from all the PPIs of our simulations.

The profiling algorithm is called R(Z, �DP)opt in this
case.

d. Test results

The overall principle of the tests is summarized on
the schematic of Fig. 4. The scores of the two algo-
rithms are presented here for 30 configurations of the
simulation setup: five options for the direct model (ref-
erence, with “noise,” with variable oblateness law, with
“big drops,” and with randomized N0), and for each
option six ways to calculate the coefficients of the al-
gorithms are tested (three oblateness law and two rain-
rate ranges). In addition, two options—R(Z, �DP) and
R(Z, �DP)opt, described above—are used to calculate
aA–Kdp. The test configurations used for the present pa-
per are summarized in Table 1.

Comparisons of the original rain rates to those re-
trieved with the two schemes R(KDP) and R(Z, �DP)opt,
for a given PPI, are presented on the scatterplots of
Figs. 11 and 12. These examples illustrate the effects of
the five assumptions considered for the direct model.
On each figure, the standard scores whose definition is
recalled below are indicated. If the Ri represent the
series of N initial rain rates and the Ei their estimate,
the scores are as follows:

Bias � �
i

�Ei � Ri�; �13�

normalized bias �NB� �

�
i

�Ei � Ri�

�
i

Ri

; �14�

normalized standard error �NSE� � 100%
��

i
�Ei � Ri�

2

�
i

Ri

; and �15�

nash � 1 �

�
i

�Ei � Ri�
2

�
i

�Ri �

�
i

Ri

N
� . �16�

On all the examples the scores are good compared to
what would be found on real data because our dataset
is by construction very “clean”: no ground echoes or
other targets, which is in practice the main source of
error in radar data, no fluctuations of the transmitted
power or malfunctioning of the automatic frequency
control (AFC), no positioning uncertainty. This is an
ideal radar. However, the exercise is interesting to

compare the relative contributions of the sources of
uncertainty and also the behavior of both schemes. It
can be seen also that the reference simulation is not
perfect, and has a nonzero bias and standard deviation.
As discussed in section 3, this is explained by the fact
that the power-law relationships on which the schemes
rely, are only true, in the best case, “on average,” but
not exact at each gate or for all the rain rates. This,
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together with smoothing effects, explains the tendency
of both schemes to underestimate the higher rain rates.
Indeed, the change of slopes observed toward the
higher values, in both the AH–KDP and R–KDP curves,
in Figs. 6a or 6d, cannot be taken into account by a
single set of coefficients a and b. Note also that the
temperature within the PPI varies a little, as prescribed
by Meso-NH.

In Figs. 13 and 14, the results are summarized in term
of normalized bias and normalized standard error and
compared for the whole set of simulations (Table 1). It
can be seen that the worst results are obtained for the
simulation with a gate-to-gate variability of the oblate-
ness law. This is also the simulation where the benefit of
adjusting the aA–Kdp coefficient on the PIA (�DP) rather
than on the specific values (AH, KDP) is the most vis-
ible, as illustrated by the better scores of the R(Z,

�DP)opt scheme compared to the R(Z, �DP) one. The
effect of the largest rain drops is mainly sensitive for the
R(Z, �DP) scheme, which depends on the assumed
value of aA–Kdp. The other interesting finding is the
sensitivity of the schemes to the random variability of
the intercept parameter N0 around its mean. The effect
is equivalent or stronger than the effect of an uncer-
tainty of 1 dBZ and 2° on reflectivity and differential
phase shift, respectively. It is also found that the
R(KDP) scheme is more sensitive than the profiling one
to the variability of the coefficients as a function of rain
rate and also to noise. The tests show the superiority of
the profiler R(Z, �DP) scheme, when the PIA is ob-
tained using coefficients that have been adjusted on the
path-integrated propagation variables, as in the R(Z,
�DP)opt scheme. In practice, this could be obtained by
having collocated measurements of �DP and of the path

FIG. 11. Scatterplots of retrieved vs original R, after applying the two retrieval schemes to
the synthetic radar data. Shown are (a), (c) the results for the scheme R(KDP) and (b), (d) the
ones for R(Z, �DP)opt. Two settings of the direct model were used: the reference setting for (a)
and (b) and the option with measurement uncertainty turned on in (c) and (d) (noise on). The
standard scores (NB, mean bias, NSE, and Nash) are indicated in the figures.
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attenuation for a few radials—for instance using the
mountain reference technique of Delrieu et al. (1997)
or a microwave link as in Rahimi et al. (2003). This
should bring a better adjustment of aA–Kdp than dis-

drometric measurements, which might misrepresent
the amounts of the larger drops. The results illus-
trate the high sensitivity of the profiler scheme to a
correct determination of the PIA from �DP, while the

FIG. 12. Same as Fig. 11, but using the following options: (a), (b) random aspect ratio; (c),
(d) random variability of N0; and (e), (f) big drops.
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FIG. 13. NSE obtained for the different test configurations summarized in Table 1. (a) The
score is indicated for the R(KDP) scheme. (b) The results are for the two options, R(Z, �DP)
and R(Z, �DP)opt, of the profiler scheme. The five possible settings for the direct model are
indicated on the plots. The symbols indicate which oblateness law is used for the calculation
of the algorithm coefficients. As indicated, the light gray and black lines show which range of
rain rates was used to derive the coefficients of the retrieval schemes.
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FIG. 14. Same as Fig. 13, but showing the NB.
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other coefficients of that scheme are hardly determi-
nant.

Finally, it is interesting to analyze the scores as a
function of the rain rates, and also as a function of the

PIA of the radial the estimated rainfall comes from.
This is done in Figs. 15 and 16. The results are pre-
sented for the five direct model’s options (reference,
noise on, randomized aspect ratio, big drop, and ran-

FIG. 15. Analysis of the NSE as a function of the rain rate. The retrieval was applied for the
five options of the direct model, as indicated on the plots. For the retrieval, the coefficients are
calculated over the range 0.1–50 mm h�1 and with the Andsager shape, except for the random
aspect ratio simulation where the linear shape (� � 0.062) is used.
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domized N0), for the two schemes R(KDP) and R(Z,
�DP) and also, for the latest, with the option R(Z,
�DP)opt. The coefficients are calculated for one oblate-
ness law only (the “Andsager” law, except for the ran-
dom oblateness simulation where the linear shape, with

� � 0.062 is used) and the rain range (0.1–50 mm h�1).
It can be seen that both the measurement uncertainty
and the gate-to-gate variability of N0 affects the perfor-
mances of R–KDP for the small rain rates. In general the
R(KDP) scheme performs the best for the medium

FIG. 16. Same as Fig. 15, but the NSE score is analyzed as a function of the PIA over the
radial where the rain rates are estimated.
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range of rain rates, while the profiler is better for both
low and high rain rates. This difference of performance
with rain rate is enhanced for the random N0 simula-
tion. Figure 16 shows that both schemes tend to per-
form better when the PIA increases (up to the range of
40 dB).

e. Maximum range of detection

At X band, one serious practical issue is the total
attenuation of the signal in rain that leads to a reduc-
tion in the radar detection range. In the previous sec-
tions, we have used the simulator to check the quality of
the rainfall estimation in the area where the estimation
is possible. In Fig. 17 we illustrate the problem of total
attenuation and range limitations at X band. It depends
on the radar sensitivity (which we parameterized here
with the minimum detectable reflectivity at range 10
km, MDR) and on the distribution of rainfall rates
along the path, which controls the PIA. Recall that our
simulation is representative of a tropical environment

with a high percentage of medium-to-heavy rainfalls
(Fig. 8a). In these conditions we find that for our stan-
dard value of MDR (�15 dBZ at 10 km) the maximum
range is greater than 40 km in 70% of cases, and its
value is below 30 km in less 15% of cases. If the radar
sensitivity is degraded to a MDR of �5 dBZ at 10 km,
we find that the maximum range is above 40 km in 50%
of cases only and below 30 km in 25% of cases, but
never below 20 km. The objective of our own radar
experiment is the monitoring of a small, 600 km2, catch-
ment. For such an application, we find that even the
radar with the lowest sensitivity is acceptable. Such sta-
tistics need to be backed up with real observations, as
the ones that are currently carried out in Africa with
the Xport radar.

5. Conclusions

A radar simulator has been developed to test rainfall
retrieval schemes, in preparation of the installation of

FIG. 17. Statistics on the maximum range of detection (or distance of total attenuation) for
all the radials, of all the PPIs of the simulated scans. (a), (b) An MDR of �15 dBZ at 10 km
and (c), (d) an MDR of �5 dBZ at 10 km. Scatterplots of the maximum range as a function
of the PIA are displayed in (a) and (c). The frequency of occurrence (solid line) and the
cumulative probability (dotted line) of the maximum detection range are presented in (b)
and (d).
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an X-band polarimetric radar in northern Benin as part
of the international African Monsoon Multidisciplinary
Analysis (AMMA) project. The simulator is applicable
to the output fields of a numerical mesoscale model. It
uses as input the mixing ratios of hydrometeors pro-
vided by the model and extracted on a polar grid using
an appropriate interpolation scheme. Compared to
other simulators developed previously, this one offers
the following advantages:

• It is modular, so various aspects of the radar mea-
surement and several sources of uncertainty in the
retrieval algorithms can be analyzed independently.

• The radar polarimetric variables are calculated using
a T-matrix code. Both backscattering and propaga-
tion effects are taken into account to calculate the
reflectivities in both channels and the differential
phase shift.

• The natural variability of drop size distributions is
taken into account at each gate by setting several
parameters of the drop size distribution, namely the
intercept parameter N0, the minimum and maximum
diameters of the drops, and the shape parameter � of
the normalized gamma distribution.

• Using the water contents extracted from a mesoscale
model offers more realism than simple mathematical
models. At the same time, keeping the simulator ex-
ternal (off line) allows more flexibility.

The radar we installed in Benin (Xport) operates in
the X band, and we focus on these frequencies. With
this setup, we revisited in a systematic way the sensi-
tivity of the backscattering (ZH, ZDR) and propagation
(AH, KDP, or the integral �DP) variables to the natural
variability of rain: temperature, shapes of drops, shape,
and width of the drop size distribution (DSD). We also
analyzed the variability of the power-law relationships
between pairs of radar variables and also between a
given radar variable and the rain rate. This led us to
restrict our tests to two schemes in which the estimation
of rain rate is based on the propagation parameters
(KDP or AH) rather than on the backscattering variables
(ZDR, Z). The first scheme is a simple R–KDP relation-
ship, and the second one is a profiler that estimates AH

using both the path-integrated �DP and the reflectivity
(as in Testud et al. 2000 or Anagnostou et al. 2004). The
derivation of the coefficients used in these two algo-
rithms raised two issues that were poorly discussed pre-
viously:

1) Because the relationships between radar variables
and rain are not perfect power laws (especially at X-
band where the Rayleigh assumption breaks down)
the calculation of these coefficients by linear fit (in

log scale) is very sensitive to the range of rain rates
considered for the fit.

2) Concerning the profiling R(Z, �DP) scheme, we
found that the relationship between the specific at-
tenuation and KDP is dependent on many factors
(temperature, shapes of drops, shape and width of
the DSD). When applying the scheme we calculate
the path-integrated attenuation (PIA) from �DP

over long rather than short ranges, so that the vari-
ability averages out. We also found that the natural
variability of the coefficient aA–Z, between specific
attenuation and reflectivity is high and cannot be
interpreted only as a variation of the intercept pa-
rameter N0.

In the next step we proceeded to evaluate the scores
of the two selected rain estimators for the type of rain-
fall we expect in Benin. For this purpose the simulator
was used with a case study of an African squall line
generated by the Meso-NH model. We analyzed the
relative sensitivity of the two estimators to several as-
pects of rain variability and to measurement uncertain-
ties. We found that

1) The uncertainty in the oblateness law affects the
R–KDP scheme less than the profiler R(Z, �DP)
scheme. The latter scheme is improved if the AH–
KDP relationship is initially adjusted using values of
the PIA and �DP.

2) For the two schemes, the random variability of N0

around its mean is a very important source of error,
as is to a lesser extent the gate-to-gate variability of
the mean oblateness. These two examples of natural
variability are shown to have an effect equivalent to
or stronger than standard measurement uncertain-
ties.

When we analyzed the scores as a function of the
rainfall rates, we found that R–KDP performs better for
rain rates between 10 and 40 mm h�1, while the profiler
performs better for the lowest and the highest rain rates
of our distribution.

This work opens new areas of investigation. First, the
sensitivity analysis presented here is limited to two al-
gorithms and we plan to extend the work to self-tuning
algorithms that compensate for drop shape variability
(such as the ones by Matrosov et al. 2005; Park et al.
2005a,b; Anagnostou et al. 2004). We could extend the
analysis to rain accumulations and not just rain rates.
We could also investigate other types of precipitation
and the application to hydrometeor sorting. X-band po-
larimetric measurements are currently being gathered
in Benin, West Africa, and the data will be interpreted
in light of the present work.
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