A. Aksoy, D. Dowell, and C. Snyder, A Multicase Comparative Assessment of the Ensemble Kalman Filter for Assimilation of Radar Observations. Part I: Storm-Scale Analyses, Monthly Weather Review, vol.137, issue.6, pp.1805-182410, 2001.
DOI : 10.1175/2008MWR2691.1

C. Amerault, X. Zou, and J. Doyle, Tests of an Adjoint Mesoscale Model with Explicit Moist Physics on the Cloud Scale, Monthly Weather Review, vol.136, issue.6, 2008.
DOI : 10.1175/2007MWR2259.1

P. Bauer, A. J. Geer, P. Lopez, and D. Salmond, Direct 4D-Var assimilation of all-sky radiances. Part I: Implementation, Quarterly Journal of the Royal Meteorological Society, vol.123, issue.652, pp.1868-1885
DOI : 10.1002/qj.659

J. Bech, U. Gjertsen, and G. Haase, Modelling weather radar beam propagation and topographical blockage at northern high latitudes, Quarterly Journal of the Royal Meteorological Society, vol.115, issue.626, pp.1191-1204, 2007.
DOI : 10.1002/qj.98

B. Enard, P. , J. Vivoda, J. Ma-sek, P. Smol-ikov-a et al., Dynamical kernel of the Aladin-NH spectral limited-area model: Revised formulation and sensitivity experiments, Quarterly Journal of the Royal Meteorological Society, vol.129, issue.D14, pp.155-169, 2010.
DOI : 10.1002/qj.522

L. Berre, Estimation of Synoptic and Mesoscale Forecast Error Covariances in a Limited-Area Model, Monthly Weather Review, vol.128, issue.3, pp.644-667, 2000.
DOI : 10.1175/1520-0493(2000)128<0644:EOSAMF>2.0.CO;2

P. Brousseau, L. Berre, F. Bouttier, and G. Desroziers, Background-error covariances for a convective-scale data-assimilation system: AROME-France 3D-Var, Quarterly Journal of the Royal Meteorological Society, vol.134, issue.655, pp.409-422, 2011.
DOI : 10.1002/qj.750

?. , G. Desroziers, F. Bouttier, and B. Chapnik, 2013: A posteriori diagnosis of the impact of observations on the AROME- France convective-scale data-assimilation system, Quart. J

G. Caniaux, J. Redelsperger, and J. Lafore, A Numerical Study of the Stratiform Region of a Fast-Moving Squall Line. Part I: General Description and Water and Heat Budgets, Journal of the Atmospheric Sciences, vol.51, issue.14, pp.2046-2074051, 1994.
DOI : 10.1175/1520-0469(1994)051<2046:ANSOTS>2.0.CO;2

O. Caumont and C. , A Radar Simulator for High-Resolution Nonhydrostatic Models, Journal of Atmospheric and Oceanic Technology, vol.23, issue.8, pp.1049-1067, 2006.
DOI : 10.1175/JTECH1905.1

URL : https://hal.archives-ouvertes.fr/insu-00385454

. Vabre, 1D13DVar assimilation of radar reflectivity data: A proof of concept, pp.173-187, 2010.

A. Caya, J. Sun, and C. Snyder, A Comparison between the 4DVAR and the Ensemble Kalman Filter Techniques for Radar Data Assimilation, Monthly Weather Review, vol.133, issue.11, pp.3081-3094, 2005.
DOI : 10.1175/MWR3021.1

P. Courtier, C. Freydier, J. Geleyn, F. Rabier, and M. Rochas, The Arpege project at M et eo-France, Proc. 1991 ECMWF Seminar on Numerical Methods in Atmospheric Models, pp.193-231, 1991.

?. , J. Th, and A. Hollingsworth, A strategy for operational implementation of 4D-Var, using an incremental approach, Quart. J. Roy. Meteor. Soc, vol.120, issue.519, pp.1367-1387, 1994.

G. Desroziers, L. Berre, B. Chapnik, and P. Poli, Diagnosis of observation, background and analysis-error statistics in observation space, Quarterly Journal of the Royal Meteorological Society, vol.75, issue.613, pp.3385-3396, 2005.
DOI : 10.1256/qj.05.108

R. J. Doviak and D. S. Zrnic, Doppler Radar and Weather Observations, 1984.

D. Dowell, F. Zhang, L. Wicker, C. Snyder, and N. Crook, Wind and temperature retrievals in the 17 Ensemble Kalman filter experiments, Mon. Wea. Rev, vol.1321322, 1981.

V. Ducrocq, D. Ricard, J. Lafore, and F. Orain, Stormscale numerical rainfall prediction for five precipitating events over France: On the importance of the initial humidity field, Wea. Forecasting, vol.172, pp.1236-1256, 2002.

R. Errico, P. Bauer, and J. Mahfouf, Issues Regarding the Assimilation of Cloud and Precipitation Data, Journal of the Atmospheric Sciences, vol.64, issue.11, pp.3785-379810, 2001.
DOI : 10.1175/2006JAS2044.1

URL : https://hal.archives-ouvertes.fr/meteo-00359106

F. Fabry, For How Long Should What Data Be Assimilated for the Mesoscale Forecasting of Convection and Why? Part II: On the Observation Signal from Different Sensors, Monthly Weather Review, vol.138, issue.1, pp.256-26410, 2001.
DOI : 10.1175/2009MWR2884.1

?. and J. Sun, For how long should what data be assimilated for the mesoscale forecasting of convection and why? Part I: On the propagation of initial condition errors and their implications for data assimilation, Mon. Wea. Rev, vol.138, pp.242-25510, 2001.

L. B-e-r-r-e and L. , A u g e r ,a n dS An overview of the variational assimilation in the ALADIN/France numerical weather-prediction system, E . S ¸ tef anescu Quart. J. Roy. Meteor. Soc, vol.131, issue.613, pp.3477-3492, 2005.

M. Fisher, Background error covariance modelling, Proc. ECMWF Seminar on Recent Developments in Data Assimilation from Atmosphere and Ocean, pp.45-64, 2003.

A. J. Geer, P. Bauer, and P. Lopez, Direct 4D-Var assimilation of all-sky radiances. Part II: Assessment, Quarterly Journal of the Royal Meteorological Society, vol.136, issue.652, pp.1886-1905, 2010.
DOI : 10.1002/qj.681

G. Haase, J. Bech, E. Wattrelot, U. Gjertsen, and M. Jurasek, Towards the assimilation of radar reflectivities: Improving the observation operator by applying beam blockage information, Preprints, 32nd Conf. on Radar Meteorology, 2007.

W. Hitschfeld and J. Bordan, ERRORS INHERENT IN THE RADAR MEASUREMENT OF RAINFALL AT ATTENUATING WAVELENGTHS, Journal of Meteorology, vol.11, issue.1, 1954.
DOI : 10.1175/1520-0469(1954)011<0058:EIITRM>2.0.CO;2

A. Hollingsworth and P. L?, The statistical structure of short-range forecast errors as determined from radiosonde data. Part I: The wind field, pp.111-136, 1986.

C. Kummerow and C. , The Evolution of the Goddard Profiling Algorithm (GPROF) for Rainfall Estimation from Passive Microwave Sensors, Journal of Applied Meteorology, vol.40, issue.11, pp.1801-1820, 2001.
DOI : 10.1175/1520-0450(2001)040<1801:TEOTGP>2.0.CO;2

J. Lafore and C. , The Meso-NH Atmospheric Simulation System. Part I: adiabatic formulation and control simulations, Annales Geophysicae, vol.16, issue.1, pp.90-109, 1998.
DOI : 10.1007/s00585-997-0090-6

URL : https://hal.archives-ouvertes.fr/hal-00329074

P. Lopez and P. Bauer, 1D1 4DVAR'' assimilation of NCEP stage-IV radar and gauge hourly precipitation data at ECMWF, 2007.

V. Mar-ecal and J. Mahfouf, Variational retrieval of temperature and humidity profiles from TRMM precipitation data, Mon. Wea. Rev, vol.12812938532, pp.3853-3866, 2000.

Y. Michel, T. Aulign, and T. Montmerle, Heterogeneous Convective-Scale Background Error Covariances with the Inclusion of Hydrometeor Variables, Monthly Weather Review, vol.139, issue.9, pp.2994-3015, 2011.
DOI : 10.1175/2011MWR3632.1

T. Montmerle, Optimization of the Assimilation of Radar Data at the Convective Scale Using Specific Background Error Covariances in Precipitation, Monthly Weather Review, vol.140, issue.11, pp.3495-3506
DOI : 10.1175/MWR-D-12-00008.1

?. and C. Faccani, Mesoscale assimilation of radial velocities from Doppler radars in a preoperational framework, Mon. Wea. Rev, vol.137, pp.10-1175, 1939.

?. and L. Berre, Diagnosis and formulation of heterogeneous background-error covariances at the mesoscale, 2010.

W. Olson, C. Kummerow, Y. Hong, and W. Tao, Atmospheric Latent Heating Distributions in the Tropics Derived from Satellite Passive Microwave Radiometer Measurements, Journal of Applied Meteorology, vol.38, issue.6, pp.633-664, 1999.
DOI : 10.1175/1520-0450(1999)038<0633:ALHDIT>2.0.CO;2

S. K. Park and K. K. Droegemeier, Validity of the Tangent Linear Approximation in a Moist Convective Cloud Model, Monthly Weather Review, vol.125, issue.12, pp.3320-3340, 1997.
DOI : 10.1175/1520-0493(1997)125<3320:VOTTLA>2.0.CO;2

J. Pinty and P. Jabouille, A mixed-phase cloud parameterization for use in a mesoscale non-hydrostatic model: Simulations of a squall line and of orographic precipitations, Preprints, Conf. on Cloud Physics, pp.217-220, 1998.

J. Probert-jones, The radar equation in meteorology, Quarterly Journal of the Royal Meteorological Society, vol.4, issue.378, pp.485-495, 1962.
DOI : 10.1002/qj.49708837810

H. Sauvageot and J. Coulomb, Radarm et eorologie: T el ed etection Active de l'Atmosph ere (Radar Meteorology: Active Remote Sensing of the Atmosphere) Eyrolles, p.pp, 1982.

Y. Seity, P. Brousseau, S. Malardel, G. Hello, P. Enard et al., The AROME-France Convective-Scale Operational Model, Monthly Weather Review, vol.139, issue.3, pp.976-991, 2011.
DOI : 10.1175/2010MWR3425.1

C. Snyder and F. Zhang, Assimilation of Simulated Doppler Radar Observations with an Ensemble Kalman Filter*, Monthly Weather Review, vol.131, issue.8, pp.1663-1677102555, 1175.
DOI : 10.1175//2555.1

J. Sun and N. Crook, Dynamical and Microphysical Retrieval from Doppler Radar Observations Using a Cloud Model and Its Adjoint. Part I: Model Development and Simulated Data Experiments, Journal of the Atmospheric Sciences, vol.54, issue.12, pp.1642-1661, 1997.
DOI : 10.1175/1520-0469(1997)054<1642:DAMRFD>2.0.CO;2

?. and H. Wang, 2013: Radar data assimilation with WRF 4D-Var. Part II: Comparison with 3D-Var for a squall line over the U.S. Great Plains, Mon. Wea. Rev, vol.141, pp.2245-2264

P. Tabary, The new French operational radar rainfall product. Part I: Methodology. Wea. Forecasting, pp.393-408, 2007.

?. , J. Desplats, K. Do-khac, F. Eideliman, C. Gueguen et al., The new French operational radar rainfall product. Part II: Validation. Wea. Forecasting, pp.409-427, 2007.

M. Tong and M. Xue, Ensemble Kalman Filter Assimilation of Doppler Radar Data with a Compressible Nonhydrostatic Model: OSS Experiments, Monthly Weather Review, vol.133, issue.7, pp.1789-1807, 2005.
DOI : 10.1175/MWR2898.1

H. Wang, T. Aulign, and H. Morrison, Impact of Microphysics Scheme Complexity on the Propagation of Initial Perturbations, Monthly Weather Review, vol.140, issue.7, pp.2287-2296
DOI : 10.1175/MWR-D-12-00005.1

?. , J. Sun, S. Fan, and X. Huang, Indirect assimilation of radar reflectivity with WRF 3D-Var and its impact on prediction of four summertime convective events, J. Appl. Meteor. Climatol, vol.52, pp.889-902, 2013.

?. , ?. , X. Zhang, X. Huang, and T. , Aulign e, 2013b: Radar data assimilation with WRF 4D-Var. Part I: System development and preliminary testing, Mon. Wea. Rev, vol.141, pp.2224-2244

E. Wattrelot, Implementation of the 1D13DVar assimilation of radar reflectivities in the AROME model at M et eo- France. Joint 19th ALADIN Workshop & HIRLAM ASM, 2009.

?. , O. Caumont, S. Pradier-vabre, M. Jurasek, and G. Haase, 1D1 3DVar assimilation of radar reflectivities in the pre-operational AROME model at M et eo-France, Proc. Fifth Conf. on Radar in Meteorology and Hydrology, 2008.

B. Wu, J. Verlinde, and J. Sun, Dynamical and Microphysical Retrievals from Doppler Radar Observations of a Deep Convective Cloud, Journal of the Atmospheric Sciences, vol.57, issue.2, pp.262-283, 2000.
DOI : 10.1175/1520-0469(2000)057<0262:DAMRFD>2.0.CO;2

Q. Xiao, Y. Kuo, J. Sun, W. Lee, D. Barker et al., An Approach of Radar Reflectivity Data Assimilation and Its Assessment with the Inland QPF of Typhoon Rusa (2002) at Landfall, Journal of Applied Meteorology and Climatology, vol.46, issue.1, pp.14-22, 2007.
DOI : 10.1175/JAM2439.1

X. Yan, V. Ducrocq, G. Jaubert, P. Brousseau, P. Poli et al., The benefit of GPS zenith delay assimilation to high-resolution quantitative precipitation forecasts: a case-study from COPS IOP 9, Quarterly Journal of the Royal Meteorological Society, vol.114, issue.10, 2009.
DOI : 10.1002/qj.508

URL : https://hal.archives-ouvertes.fr/hal-00424350