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Abstract: Controlling dengue virus transmission mainly involves integrated vector 

management. Risk maps at appropriate scales can provide valuable information for 

assessing entomological risk levels. Here, results from a spatio-temporal model of 

dwellings potentially harboring Aedes aegypti larvae from 2009 to 2011 in Tartane 

(Martinique, French Antilles) using high spatial resolution remote-sensing environmental 

data and field entomological and meteorological information are presented. This  

tele-epidemiology methodology allows monitoring the dynamics of diseases closely related 

to weather/climate and environment variability. A Geoeye-1 image was processed to 

extract landscape elements that could surrogate societal or biological information related to 

the life cycle of Aedes vectors. These elements were subsequently included into statistical 
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models with random effect. Various environmental and meteorological conditions have 

indeed been identified as risk/protective factors for the presence of Aedes aegypti immature 

stages in dwellings at a given date. These conditions were used to produce dynamic high 

spatio-temporal resolution maps from the presence of most containers harboring larvae.  

The produced risk maps are examples of modeled entomological maps at the housing level 

with daily temporal resolution. This finding is an important contribution to the development 

of targeted operational control systems for dengue and other vector-borne diseases, such as 

chikungunya, which is also present in Martinique. 

Keywords: dengue; remote-sensing; risk mapping; Aedes aegypti; medical entomology 

 

1. Introduction 

Dengue is an infectious disease caused by one of the four serotypes (DEN-1 to DEN-4) of the 

dengue virus. It is transmitted by the bite of infected Aedes female mosquitoes and primarily occurs in 

urban areas. Even if the mortality rate is low among human populations, dengue is considered as one 

of the most important mosquito-borne viral disease due to its extensive geographic spread (125 endemic 

countries) with 50 to 200 million annual infections [1]. 

In Martinique (French Antilles), six dengue epidemic waves occurred during the last 20 years.  

More than 41,000 clinical cases were reported during the penultimate epidemic in 2010, accounting for 

approximately 10% of the island population. In this region, the Aedes aegypti mosquito is the single 

identified vector for the transmission of dengue virus to date. This mosquito breeds mostly in artificial 

domestic or peridomestic containers filled with clean water with little organic debris and low 

concentrations of inorganic nutrients [2,3]. In Martinique, potential breeding sites include (i) flower 

pots with saucers, detritus, and debris, abandoned cars and tires, badly maintained gutters, discarded 

old domestic appliances or pools that may be all filled-up naturally with rainfall; (ii) containers such as 

drum barrels that may be deliberately placed under gutters or in yards to collect rain water for 

watering/cleaning purposes; (iii) rarely, containers that can be artificially filled-up when watering. 

Antivectorial and mosquito nuisance control are managed by a public organization (Service de 

Démoustication et de Lutte Antivectorielle, SD-LAV). Since 1991, the SD-LAV has collected 

information on dengue vectors with an additional effort during outbreaks. 

No specific treatment is available for dengue, and no operational vaccine is currently available [4]. 

Controlling virus transmission thus mainly consists of integrated vector management: (i) information is 

provided to the inhabitants to avoid the creation of potential larval habitats; (ii) source reduction occurs 

via the physical destruction of the potential/positive breeding sites; and (iii) insecticide spraying 

mainly occurs during epidemics. It is also important to note that it has been shown that for dengue 

vectors, “targeting only the most productive water container types (roughly half of all water holding 

container types) was as effective in lowering entomological indices as targeting all water holding 

containers at lower implementation costs” [5]. In this context, good knowledge of the entomological 

conditions in a given area and during a given period of time is a prerequisite for implementing efficient 

control. Unfortunately, entomological data are seldom collected longitudinally, and available data often 
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provide only a snapshot of a rather continuous phenomenon. Risk maps at appropriate scales can provide 

surrogate data and valuable information regarding a spatio-temporal evaluation of entomological risk. 

Mapping at global scales may co-exist with fine scale or local mapping to establish local control strategies. 

From global/regional to local scales, the heterogeneity of spatial and temporal distributions of 

dengue vectors/cases is partly led by weather/climate conditions (e.g., rainfall amount, relative 

humidity, and temperature), environment/landscape (e.g., vegetation and soil types) or human  

activities (e.g., transportation, urbanization, and waste management). Subsequent modeling of 

entomological/epidemiological dengue risk may benefit from the use of remote-sensing (RS) 

information that may provide appropriate ecological, meteorological, and geographic outputs. Choices 

may be made among available satellite products at various temporal, spectral, and spatial scales.  

In recent years, satellite products have been used to map numerous vector-borne diseases [6–10], and 

these products were recently proven to provide useful information for modeling Aedes aegypti or 

Aedes albopictus distribution [11–19], human dengue cases distribution [20,21] or the potential for 

future dengue vector or disease expansion [22–24]. 

The present study involves mapping the risk of the presence of Aedes aegypti immature stages 

around houses. This condition is necessary but not sufficient for dengue fever emergence given the 

numerous factors interplaying between the presence of Aedes larvae and dengue cases (rate of adult 

mosquito emergence, human-vector contact, human population movements, and acquired immunity to 

circulating serotype). Indeed, it has been argued that “mapping and spatial modeling based on mosquito 

presence or abundance data should be viewed as only representing potential dengue risk” [25]. 

Therefore, the larval maps of the present study will be referred to as “entomological dengue risk 

maps”. Recipients of such maps should include the vector managing units that subsequently focus 

control interventions in places and times where/when the risk of vector presence is highest. 

The practical and conceptual approach of tele-epidemiology could then be applied to the  

spatio-temporal mapping of entomological dengue risk in urban settings in Martinique. It has been 

developed and patented by the French Spatial Agency (CNES) and its partners [26,27]. The approach 

involves monitoring and studying the spatio-temporal dynamics of human and animal diseases that are 

closely related to weather/climate and environment variability. It relies on the identification of an 

experimental unit, which serves as the “object” that must be identified/characterized to properly assess 

the levels of risk. This unit is based on the sound knowledge of the biological and physical processes 

that underline the presence/densities of immature and adult vectors. It is thus widely dependent upon 

the disease being investigated. For example, this experimental unit is a pond (~1 ha) when studying 

Rift Valley Fever entomological risk [28] and a water body or aggregates of small water bodies  

(~0.1 ha) when studying urban malaria entomological risk [29]. Then, appropriate choices of satellite 

data and dynamic models must be assessed along with extensive use of in situ measurements. 

Three observations underpinned the present study. Firstly, if the potential Aedes aegypti breeding 

habitats could not be directly detected using satellite images even at very high spatial resolution, their 

specific environment could be mapped. Indeed, the dwelling and yard conditions may reflect local 

habits regarding the maintenance of private yards/gardens and their close surroundings that may be 

associated with the presence of containers that retain water. Secondly, estate characteristics (i.e., shading 

and tidiness of a house and its yard) have been identified as determinants of the presence/abundance of 

Aedes aegypti immature stages and eggs [18,30–32]. Thus, the characterization of fine-scale 
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environments could provide information on the risk factors for the presence of dengue vector immature 

stages in areas where containers are present. Thirdly, meteorological conditions mainly drive the 

temporal dynamics for container filling as well as entomological dynamics (e.g., eggs hatching and 

larvae development). Consequently, the experimental unit here has been defined as the house with its 

nearby environment studied on one specific date. The state of such units was then described with 

details at the field level (i.e., ground entomological investigations), meteorological level (high 

temporal resolution ground observation station), and environmental level (i.e., high spatial resolution 

RS data). The main objective here was to model in space and time the houses considered to be  

so-called “positive” for Aedes aegypti immature stages from 2009 to 2011 in Tartane (Martinique, 

French Antilles) by using RS environmental data and field meteorological information. This modeling 

was performed to produce high spatio-temporal resolution dengue entomological risk maps. 

2. Multi-Disciplinary Data and Methods 

2.1. Studied Site and Period 

The city of Tartane (14°45′29.24″N, 60°55′10.56″W) belongs to the Caravelle Peninsula, which is 

located northeast of Martinique. This area has historically served as a fishing cove with small and  

low-rise dwellings surrounded by small gardens or yards. The city center is near the seaside, whereas 

other sections are located uphill. The population is made up of ~3000 inhabitants. The area is a tourist 

attraction and includes many vacation accommodations. The studied site is approximately 8 km² 

(Figure 1). Several dengue outbreaks, including one that occurred in 2010, have started in Tartane, 

possibly due to favorable entomological conditions [33]. Although dengue epidemics “typically” last 

from July to December, viral circulation in 2010 was noted in early February, peaked in June and 

lasted until the end of the year. The studied period thus included this epidemic and ran from June 2009 

to August 2011. 

Figure 1. The Martinique Island, the studied area, and the six studied sections (black 

rectangles numbered 1 to 6) on the Tartane Peninsula. 
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2.2. Entomological Data 

The SD-LAV conducts entomological surveillance in Martinique and thus regularly records 

mosquito information in the houses of the island municipalities [34]. All of the available records were 

selected from the SD-LAV databases for the studied period and area. Each record was associated with 

a given inhabited house visited on one of the following dates: 19/06/2009, 01/10/2009, 22/10/2009, 

09/11/2009, 22/02/2010, 23/02/2010, 05/03/2010, 23/08/2011, 29/09/2010, and 02/12/2012. The records 

contained information regarding the number and type of domestic and peridomestic containers as well 

as the presence of Aedes aegypti immature stages (i.e., all larvae stages and pupae). As the records did 

not contain geographic coordinates, only the records that could have been retrospectively plotted with 

a global positioning system (GPS) were maintained in the final database. Plotting was performed 

during July 2012 by the operators who conducted the 2009–2011 ground surveys and was based on the 

recorded name of the inhabitant and a deep knowledge of the area. Types of domestic or peridomestic 

containers include drum barrels, tanks, waste-bins, flower pots and saucers, gutters, tires, discarded 

appliances, and pools. Sampled houses are positioned in Figure 2. From their spatial distribution, six 

sections were identified as shown in Figure 1. 

Figure 2. Map of the sampled houses. 

 

The ten different dates covered different seasons of the year. A total of 117 houses were visited  

(i.e., 88 houses visited once, 18 twice, 10 thrice and one visited four times), representing 

approximately 12% of the total number of houses in the studied area. Thus, the number of 

observations, i.e., experimental units, was 158. A total of 88 out of those 158 experimental units were 

positive for the presence of peridomestic water-filled containers (from one to 11 containers per house 

at a given date). Thirty experimental units were Aedes larvae-positive (19% of all experimental units 

and 34% of all water-positive experimental units). Among all types of water-filled containers, large 

containers and drum barrels were most frequently identified as Aedes larvae positive with 57% and 
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51% positive observations, respectively. These containers were noted at 82% of the total number of 

positive breeding sites. 

2.3. Meteorological Data 

In Martinique, the summer rainy season (July to November) is characterized by frequent and heavy 

rainfall and maximum temperatures of approximately 32 °C, whereas the dry season (February to April) 

exhibits maximum temperatures of approximately 30 °C. These seasons are separated by two intermediate 

seasons. Rainfall amounts are heterogeneous on the island, ranging from approximately 1500 mm to 

greater than 4000 mm in the mountainous area. The year 2009 was exceptionally hot with minimal 

rainfall except on the Atlantic coastline. In 2010, temperatures were also high particularly during 

February and March. February was almost completely dry. Heavy precipitation started in early June 

followed by a very dry period. Again, the year 2011 experienced hot temperatures. However, 2011 was 

the wettest year of the 2009–2011 period with basically no dry season. 

Daily temperature and humidity (minimum, maximum, and mean values) as well as precipitation 

amounts were provided for the present study by Météo-France. They were recorded at the observing 

station located in the Caravelle Peninsula. Yearly precipitation levels recorded during 2009, 2010, and 

2011, were 948 mm, 1408 mm, and 1823 mm, respectively. Several variables were calculated from the 

raw data, added to the entomological database, and matched according to the date of the ground 

surveys as follows:  

- total rainfall amount for the 2-, 3-, 4-, ..., to 30-day period before each entomological ground 

investigation date; 

- average of temperature and relative humidity for the 2-, 3-, 4-, ..., to 15-day period before each 

entomological ground investigation date. 

2.4. Satellite Images and Environmental Data 

A Geoeye-1 optical image with clear sky was acquired on 13/03/2011. Data included four spectral 

bands at a 0.41-m spatial resolution (blue, green, red, and near infrared). The image was projected in 

WGS 84, UTM Zone 20 N and geometrically corrected using the 50-m spatial resolution elevation 

map (IGN BD ALTI®) from the French National Geographic Institute IGN (Institut National de 

l’Information Géographique et Forestière). Image processing was performed using ENVI 4.8 and 

ENVI EX (Exelis Visual Information Solutions). Other available geographic data included IGN 

topographic map (IGN BD TOPO®) and cadastral map (IGN BD ADRESSE®). Slope and  

objects height maps at 1-m spatial resolution were available through Litto3D® (IGN, Service 

Hydrographique et Océanographique de la Marine, Direction de l’Environnement, de l’Aménagement 

et du Logement—Martinique, Agence des Aires Marines Protégées), which was produced from 

airborne LIDAR measurements. 

Three vegetation and soil indicators were derived from the Geoeye-1 image (Table 1). 
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Table 1. Environmental indicators calculated from the Geoeye-1 image at 0.41-m  

spatial resolution. 

Environmental Indicator Spectral Bands Combination * Description 

NDVI (Normalized 

Difference Vegetation 

Index) [35,36] 

NIR red

NIR red

−
+

 

Values increase with the presence and 

density of vegetation. A value superior to 

0.2 typically corresponds to a vegetated area. 

Negative values indicate non-vegetated 

features, such as barren surfaces (rocks and 

soils), water, built-up areas or asphalt. 

NDWI Mac Feeters 

(Normalized Difference 

Water Index) [37] 

green NIR

green NIR

−
+

 

It delineates open water features while 

eliminating the presence of soil and terrestrial 

vegetation features. Values increase with the 

presence of water and decrease with the 

presence of vegetation. 

ANDWI (Adapted NDWI 

Mac Feeters Index) 

blue NIR

blue NIR

−
+

 Using the blue band, this adapted NDWI Mac 

Feeters maximizes the detection of water. 

* NIR: Near infrared; SWIR: Short wave infrared. 

A three-step classification procedure was applied to produce the Land Use and Land Cover (LULC) 

map of the studied area. Firstly, a supervised maximum likelihood pixel-based classification was 

performed in ENVI 4.8 based on a set of training areas covering 5.4% of the total surface of the image. 

For each identified LULC class, a set of training polygons were digitized by an operator who  

photo-interpreted the Geoeye-1 image. The spectral signature of each class was then built by the 

software. Each pixel was assigned to the class having the highest probability to be the correct one 

based on those spectral signatures. No exclusion threshold was defined, so every pixel of the studied 

zone was classified. Some validation regions were also digitized, and they covered 4.7% of the image 

total area. They were used to calculate the kappa coefficient, which provides a measurement of the 

classification accuracy. This coefficient was 0.91, indicating a good agreement between the resulting 

LULC classes and the validation areas. Secondly, as improvements could be expected in the classification 

accuracy of some elements of the landscape, an object-oriented classification was performed. 

Segmentation, merging objects, and implementation of rules (area, convexity, average values of bands...) 

were undertaken in the ENVI EX Feature Extraction module. The quality of this classification was 

assessed by photo-interpretation, and it was thus concluded that the roofs and the swimming pools 

were accurately classified. Thirdly, a final classification was produced by merging both pixel and 

object classifications using a decision tree. It included fourteen land-cover classes: i.e., five for 

vegetation, including “trees”, “sugar cane”, “stubbles”, “lawn”, “sparsely vegetated soil”, five different 

types of roofs, “sand”, “asphalt”, “swimming pools”, and “sea/ocean”. A merged class for all roof types 

was also created. 
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2.5. Geographic Information System (GIS) 

A GIS was built using ArcGIS 10.0 (Environmental Research Systems Institute, Redlands, CA, USA) 

to characterize the experimental units defined in the Introduction. All 117 surveyed houses were 

plotted, and environmental indices, LULC map, and elevation data were added as geo-referenced 

layers. Each single house of the Caravelle Peninsula was isolated as an object based on the LULC map. 

The plot around each house was identified using the IGN cadastral map. 

Environmental variables, i.e., the minimum/maximum/mean for the three indices, the slope and the 

object height and the areas of each LULC class, were computed for each surveyed house. This was 

accomplished for each plot and for the 50-m and 100-m radius buffer zones around the individual 

houses. The Euclidian distance from the house to the first patch of each LULC class as well as the area 

of houses (assumed equal to the area of their roofs) and plots were calculated. These data were merged 

with the entomological database for each house. 

2.6. Modeling Strategy 

The overall database included the entomological, environmental, and meteorological variables 

described above. Each record was associated with one house visited on one date, i.e., with one 

experimental unit. The chosen scenario (Figure 3) included the following two steps that involved the 

investigation of driving environmental and meteorological factors:  

- Step 1: the presence of one or several water-filled container(s) in the vicinity of a house at a 

given date, independently of the presence or not of Aedes aegypti immature stages. This 

involved the detection of the water-positive experimental units; 

- Step 2: the presence of Aedes aegypti immature stages exclusively in the experimental units 

that held one or several water-filled container(s). This involved the detection of the Aedes 

larvae-positive experimental units. No reference to the larval density was included. 

Given that the number of domestic water containers was very low in the area, only the peridomestic 

containers were considered. 

Figure 3. Scenario retained for dengue entomological risk mapping. 
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2.7. Statistical Analysis and Risk Mapping 

Statistical analyses were performed using Stata 11 (Stata Corporation, College Station, TX, USA). 

Logistic regression analyses to explain the outcomes from both steps above were fitted at the 

experimental unit level using environmental and meteorological indicators as possible explanatory 

variables. For each model, uncorrelated variables with p-values < 0.25 from univariate analyses were 

candidates for multivariate analyses. Selection among the high number of co-linear variables, i.e., 

meteorological and environmental variables that were created at several time and space scales, was 

performed by minimizing the AIC (the Akaike Information Criterion) in univariate analysis as well as 

by choosing variables with the best biological input. A manual backward stepwise selection procedure 

was applied in the final model to select variables with p-values < 0.05. The sampling scheme implied 

that some autocorrelations could exist between observations given that nearby observations could be 

more similar than distant ones due to the presence of more similar surroundings. In the case that the 

local environment was not fully considered by the explanatory variables, a random effect was added to 

the models at the level of the section. Model validity was assessed using the full sample and Receiver 

Operating Characteristic (ROC) curve (i.e., representation of sensitivity against 1-specificity or true 

positive rate versus false positive rate, thereby providing the discriminative value of a test). It should 

be noted that the small amount of observations did not allow validity assessment of the models with a 

subset of observations. The cut-off value was chosen to maximize sensitivity and specificity. 

Robustness was assessed using six sub-models of each final model fitted by separately omitting the 

experimental units of each section. 

The linear equations derived from the final models allowed for the prediction of outcomes at the 

non-surveyed experimental units, i.e., other Tartane houses and dates other than the dates of the 

surveys. We have chosen to undertake mapping for each day of the 2010 year to visualize the seasonal 

variability. The explanatory variables of the final models (Steps 1 and 2) were extracted from the GIS 

for every single building of the area. Meteorological independent variables that were significantly 

associated with the outcomes were calculated for each day of 2010. Then, the equation of Step 2 was 

applied to the buildings that were predicted as water positive in Step 1. The results were daily maps of 

the houses harboring Aedes larvae-positive container(s). These maps were merged into composite 

monthly maps that included the number of days for which each house was predicted to be Aedes  

larvae positive. 

3. Results and Discussion 

3.1. Results 

3.1.1. Step 1. Modeling the Water-Positive Experimental Units 

In univariate analysis, several environmental and meteorological variables were significantly 

associated with the presence of water-filled container(s) in the experimental units. These environmental 

parameters included the area of the class “sparsely vegetated soil” in the plot, area of the class “tiled 

roof” in the plot, area of the class “swimming pool” within a 50-m buffer, slope of the plot, mean 

object height in the 100-m buffer (with positive sign), as well as area of the class “lawn” within the  
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50-m buffer, area of the class “sand” within the 50-m buffer and distance to the class “sparsely 

vegetated soil” (with negative sign). Some rainfall, temperature, and humidity variables were also 

positively or negatively associated with the presence of one or several water-filled container(s) in an 

experimental unit. 

In multivariate analysis, the area of the class “sparsely vegetated soil” in the plot and the total 

rainfall during the 4-day period before the day of the field visit were positively associated with the 

outcome, whereas the area of the class “lawn” within the 50-m buffer around the house was negatively 

associated with the outcome (Table 2). The section random effect was not statistically significant in the 

final model. In addition, the six sub-models fitted by separately omitting the experimental units of each 

section provided similar coefficients compared with the final model. The area under the ROC curve 

was 0.72 (95% confidence interval: 0.64–0.80). A total of 103 experimental units out of 158 were 

correctly predicted (65%). The sensitivity was 63%, and the specificity was 69%. The positive 

predictive value was 71%, and the negative predictive value was 59%. 

Table 2. Remote-sensing environmental and ground meteorological variables significantly 

associated with water-positive experimental units. Multivariate logistic regression analyses 

with section random effects are provided (Step 1). 

Explanatory Variables Coefficient 95% Confidence Interval p-Value 

158 Experimental Units, 6 Sections 

Surface of the class “sparsely vegetated soil” 
in the house plot (per 10 m2) 

0.10 [0.02; 0.19] 0.017 

Surface of the class “lawn” within the 50-m 
buffer around the house (per 100 m2) 

−0.10 [−0.17; −0.03] 0.007 

Total rainfall during the 4-day period before 
field visit (per 10 mm) 

0.26 [0.07; 0.46] 0.007 

section random effect   0.498 

3.1.2. Step 2. Modeling the Aedes Larvae-Positive Experimental Units 

In univariate analysis, several environmental and meteorological variables were associated with  

the presence of Aedes larvae-positive container(s) in the experimental units that held water-filled 

container(s). Those environmental variables included area of the class “tree” within the 50-m buffer, 

mean height of the houses within the 50-m buffer, mean NDVI within the 50-m buffer (with positive 

sign), as well as area of the class “asphalt” within the 50-m buffer, area of the class “swimming pool” 

within the 50-m buffer, and area of the class “tiled roof” within the 50-m buffer (with negative sign). 

Some rainfall, temperature, and humidity factors were also positively or negatively associated. 

In multivariate analysis, the mean of the maximum humidity recorded during the 5-day period 

before the day of the ground investigation was positively associated with the outcome, whereas the 

area of the class “asphalt” within the 50-m buffer around the house was negatively associated (Table 3). 

The section random effect was not statistically significant in the final model. In addition, the six  

sub-models fitted by separately omitting the experimental units of each section provided very similar 

coefficients compared with the final model. The area under the ROC curve was 0.74 (95% confidence 

interval, 0.63–0.86). A total of 64 experimental units out of 88 were correctly predicted (73%).  
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The sensitivity was 70%, and the specificity was 74%. The positive predictive value was 58%, and the 

negative predictive value was 83%. 

Table 3. Remote-sensing environmental and ground meteorological variables significantly 

associated with Aedes larvae-positive experimental units among units that hold water-filled 

container(s). Multivariate logistic regression analyses with section random effects are 

provided (Step 2). 

Explanatory Variables Coefficient 95% Confidence Interval p-Value 

88 Experimental Units, 6 Sections 

Surface of the class “asphalt” within the 50-m 
buffer around the house (per 100 m2) 

−0.10 [−0.17; −0.04] 0.003 

Mean of maximum humidity during the 5-day 
period before field visit (per 1%) 

0.27 [0.07; 0.48] 0.008 

section random effect   0.209 

3.1.3. Application of the Scenario (Step 1 + Step 2) 

Final predictions from the chosen scenario are displayed in Table 4. A total of 132 experimental 

units out of 158 were correctly predicted (84%). The sensitivity was 57%, and the specificity was 90%. 

The percentage of correctly classified predictions ranged from 67% to 92% depending on sections.  

The positive predictive value was 57%, and the negative predictive value was 90% (false positive  

rate = 43%; false negative rate = 10%). 

Table 4. Final predictions of the scenario versus field data: number of Aedes larvae-positive 

experimental units versus number of Aedes larvae-negative experimental units. 

Prediction from Scenario 

  
Number of Aedes  
Larvae-Negative  

Experimental Units 

Number of Aedes  
Larvae-Positive  

Experimental Units 
Total

Field Data 

Number of Aedes larvae-negative 
experimental units 

115 13 128 

Number of Aedes larvae-positive 
experimental units 

13 17 30 

Total 128 30 158 

3.1.4. Predictive Entomological Risk Mapping in Tartane 

Both steps of the scenario were successfully applied to every building (983) of the studied area at 

each day of the 2010 year to generate high spatio-temporal resolution entomological risk maps. The 

resulting composite monthly maps are displayed in Figure 4 and Supporting Information. None of the 

buildings was predicted as being Aedes larvae-positive for 100% of the days in 2010. A total of  

126 buildings were predicted to have less than 10 Aedes larvae-positive days in the year, among which 

28 were predicted to always be negative for Aedes larvae (0 positive days in the year). Maximum 

entomological risk was found in section 5 (see Figure 1, top right corner). The risk was decreased in 
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sections 1, 2 and 4 (same risk) as well as sections 6 and 3 (see Figure 1, top right corner) with yearly 

figures among the sections ranging from 77% to 15% Aedes larvae-positive experimental units. June 

and September 2010 exhibited the highest predicted entomological risk (45% and 44%, respectively, of 

the number of experimental units were predicted as Aedes larvae positive), whereas February and 

December were predicted with the lowest risk (17% and 18%, respectively, of the number of 

experimental units were predicted as Aedes larvae positive). 

Figure 4. Monthly entomological risk maps from the modeling experiment based on data 

from January until December 2010. The number of predicted Aedes larvae-positive days 

for the 983 buildings within the studied area is provided (see color code at bottom left). 
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3.2. Discussion 

In the present study, the practical and conceptual approach of tele-epidemiology, which was 

developed by the CNES and its partners, was used to generate spatio-temporal high-resolution 

entomological risk maps for the presence of Aedes aegypti immature stages in Tartane, Martinique. 

The experimental unit was the single house and its close surroundings studied at a specific date. This 

unit was proven to be an appropriate scale for mapping risk, which is consistent with the suggestion 

that entomological dengue risk would best be measured at the household scale [38]. Environmental and 

meteorological data, which are synergetic drivers of mosquito presence and density, were both 

included for modeling the presence of dengue vector larvae. Ecological data has also been used as a 

surrogate for sociological and behavioral information. The resulting maps are examples of modeled 

entomological risk maps at the dwelling level with daily temporal resolution. These maps highlight the 

spatio-temporal variability among the houses that contained Aedes larvae-positive container(s). 

3.2.1. A Two-Step Approach 

A two-step approach was performed to closely link entomological modeling to the biological, 

physical, and societal mechanisms that drive (i) the presence of water-filled containers and (ii) larval 

development. Each step involved distinct physical and biological mechanisms, so these steps were 

separately considered. The presence of containers around houses is related to population behavior and 

socio-economic/socio-cultural aspects, whereas the presence of larvae in those containers is associated 

with ecological and meteorological factors that impact their biological cycle. 

Modeling of the houses harboring one or several water-filled container(s) at a given date was 

achieved using two predictors from the Geoeye-1 image and one field meteorological variable. Firstly, 

the surface of the class “sparsely vegetated soil” in the house plot was positively associated with the 

water-positive experimental units. Secondly, the surface of the class “lawn” within the 50-m buffer 

around the house was negatively associated with the outcome. Both variables represent garden 

maintenance given that houses surrounded by lawn are likely to be well maintained. On one hand, 

containers or waste-bins that could be filled with precipitation should occur less frequently in  

well-maintained environments. On the other hand, an individual’s socio-economic level may reflect 

the need to collect rainfall water in drum barrels to save money. In contrast, collecting rainfall may 

also be related to environmental-friendly behavior. Thirdly, the total rainfall during the 4-day period 

before the field visit was logically a risk factor for the presence of water-filled container(s) given that 

most of the containers, either intentionally or not, were filled with rainfall. Artificial filling of 

containers, which rarely happens, was not considered in this study. Nevertheless, large containers and 

drum barrels, which serve as major Aedes larval sites (82% of the total number of positive sites), were 

not artificially filled and were correctly accounted for in the analysis. 

Modeling of the houses harboring one or several Aedes larvae-positive container(s) among the 

sampled houses having water-filled container(s) was achieved using one predictor from the Geoeye-1 

image and one ground meteorological variable. Firstly, the surface of the class “asphalt” within the  

50-m buffer around the house was negatively associated with the outcome. This variable was strongly 

inversely correlated with the NDVI, which evaluates the density of vegetation. Many studies have 
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highlighted the association between shade potentially provided by vegetation and the presence of 

Aedes immature stages [30,39,40]. Shade may lower the very high water temperatures that have been 

specifically recognized as a negative factor for the presence of Aedes aegypti larvae [3]. Vegetation 

may also provide nutrients for larvae via leaves falling in the water [41], whereas nectar could serve as 

food for adult mosquitoes [42]. In Martinique, Aedes aegypti is mainly endophilic, so vegetation 

probably does not serve as a resting site. Although the scale of the associations between shade and 

Aedes aegypti have been established at 2–3 m using ground data [40], the results of the present work 

corroborate previous studies that used remote-sensing images. Indeed, the presence of trees within a 

30-m radius buffer zone was associated with adult Aedes aegypti abundance in Arizona [18], and niche 

modeling using Landsat 7 images (with 30-m spatial resolution) predicted the areas suitable for 

Aedes aegypti breeding sites in Colombia [11]. Nonetheless, the class “asphalt” likely provided more 

information than a NDVI variable given that this class was retained in the final statistical model 

instead of any NDVI variable. Indeed, asphalt surroundings, which are related to high temperatures 

and evaporation, may also be unfavorable for allowing the breeding sites to persist long enough to be 

suitable for full cycle larval development. Secondly, the mean of maximum humidity for the 5-day 

period before the entomological record was positively associated with the presence of Aedes  

larvae-positive container(s) in the experimental units. The association was robust given that the 

variables for the 2- to 14-day period before the entomological record were also significantly associated 

with this outcome. Similar results were noted in Brazil [43] and Australia [44]. Humidity is positively 

correlated with precipitation and negatively correlated with evaporation. Thus, humidity may be 

related to an increased presence of water in the containers, thereby increasing the probability of 

complete larval development. This finding is consistent with previous works that have highlighted the 

association between rainfall and Aedes aegypti [45–48] or included rainfall data as predictive variable 

for modeling dengue risk [24]. 

3.2.2. Scales and Resolutions 

Very high spatial resolution remote-sensing environmental variables and high temporal resolution 

ground meteorological variables were included. The ecological factors were temporally static (i.e., one 

value for the whole period), but they provided spatial dynamic as these variables were extracted from a 

very high spatial resolution satellite image (GeoEye-1 0.41 cm). The urban environment in Tartane 

remained quite stable during the studied period, justifying the use of one unique satellite image.  

On one hand, the majority of the LULC classes were appropriately defined by this unique image 

(buildings, asphalt, sea, swimming pools, sand, sugar cane, stubbles, and trees) given that they are not 

seasonally impacted. On the other hand, with regard to lawns, sparsely vegetated soil, and soil and 

vegetation indices that vary according the seasons, one unique image only provided a snapshot of  

the landscape. However, even static environmental data provide useful information for describing 

experimental units. Indeed, lawn and sparsely vegetated soils were identified as final explanatory 

variables at the first step of modeling, wherein environmental factors aimed to describe socio-economical 

and behavioral inputs. Using one unique image did not prevent from highlighting useful information;  

for example, the existence of a lawn during a dry season indicated that the garden was particularly well 

maintained, which reinforced the probability of the absence of water-filled containers. On the contrary, 
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meteorological factors were spatially static (i.e., one value for the whole studied area was obtained 

from a ground observation station). However, these factors were extracted at a fine temporal scale 

(daily), thereby providing temporal dynamics. Regarding the size of the studied area, it was difficult to 

obtain variability in meteorological data apart from installing ground devices in the different sections 

or accessing ground radar data (about 1 km spatial resolution). Indeed, even remotely sensed rainfall 

data (e.g., Tropical Rainfall Measuring Mission (TRMM) and Rainfall Estimation (RFE)) do not 

provide heterogeneity in such small areas due to their spatial resolution (0.25° for TRMM and RFE). 

Nevertheless, a recent study has revealed that it is crucial to consider the variability of rainfall amounts 

when modeling vector distribution, but the scales were beyond the size of the studied area [49]. 

3.2.3. Accuracy and Validity of Models 

Given that the number of observations was limited, the validation was not based upon datasets 

different from those used to fit the models. The fact that 84% of the experimental units were correctly 

predicted is thus probably overestimated. The positive predictive value of the two-steps scenario was 57%, 

and the negative predictive value was 90% (false positive rate = 43% and false negative rate = 10%). 

From a larval control operational point of view, this scenario is very powerful to limit the amount of time 

spent on the ground by preventing the teams from visiting a large number of negative houses. However, the 

predictive ability to detect positive houses should be improved given that a large proportion of risky houses 

are missed. 

Bias could have been introduced in the models given that ground data were not collected on the 

same dates for each section. In addition, some sections were preferentially investigated during rainy/dry 

seasons. Nevertheless, analysis of the resulting risk maps indicated that the sections that were followed 

mainly during rainy or dry seasons exhibited no particular pattern in terms of prediction of Aedes aegypti 

larvae presence. Indeed, although an entirely environmental model could not have been fitted due to 

this bias, the presence of meteorological variables in the models served as seasonal adjustment.  

In addition, the six sub-models which were fitted at both steps by separately omitting the experimental 

units of each section provided estimates similar to the final models. The latter indicates that none of 

the sections significantly modified the modeling results. Finally, the fact that the section effect was not 

significant at both steps of the analysis revealed that the explanatory variables managed to represent 

the environmental heterogeneity of the dataset. 

3.2.4. From Entomological Risk Maps to Ground Control Actions 

Models should be used to spatially and temporally prioritize prevention where the risk is the  

greatest [38]. On the one hand, entomological data are rarely collected in a routine fashion in a given 

area. When field studies are undertaken, they often provide only a snapshot of a continuous 

phenomenon. Risk maps are then expected to provide continuity for enhanced risk evaluation. On the 

other hand, maps that are available at the household level could facilitate the detection of “key 

premises” [50,51] for efficient control. Indeed, houses with an increased number of Aedes  

larvae-positive days in a month could be targeted for the destruction of breeding sites and dispersal of 

information to human populations to decrease the logistic burden. The resulting maps of the present 

study could subsequently be used as a tool for Aedes aegypti larvae control operational systems based 
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on updated satellite images and meteorological information. Indeed, the equations resulting from the 

final models at both steps could be applied in the same area at other dates or even in other similar 

settings if the same LULC classes could be extracted from very high-resolution images. Although such 

image processing is time consuming, a unique image could be used to predict the entomological risk for 

several years in urban areas that are not experiencing rapid expansion. A prerequisite would involve 

testing the validity of any extrapolated predictions with new ground data. In any objective of using risk 

maps to assess dengue epidemiological risk, the association between the spatio-temporal distribution of 

immature stages and dengue disease should be evaluated in this area of Martinique. Indeed, a review 

paper highlighted various studies that have demonstrated this direct association as well as other studies 

that failed [25]. It is highly probable that additional layers of information should be added to those 

entomological maps, including pupal productivity or adult (infected) vector densities as well as human 

factors (acquired immunity, human-vector contact, population movement and distance to epidemic areas). 

4. Conclusions 

The present study revealed that environmental information at a fine spatial scale obtained using 

very high-resolution satellite images coupled with field meteorological data at a fine temporal scale 

were successfully highlighted as explanatory variables for the presence of Aedes aegypti larvae in 

Tartane, Martinique. Daily entomological predictive risk maps of the presence of Aedes aegypti  

larvae-positive container(s) were generated at the level of individual houses. As it has been often 

advocated, focusing interventions in the places and periods with maximum risk is paramount to 

enhanced allocation of limited resources and improved dengue control. In this context, such 

entomological risk maps may be considered as one of the tools available, and tele-epidemiology may 

be applied. Finally, the approach presented in this paper can be applied to assessments of the emerging 

chikungunya entomological risk levels in Martinique given that Aedes aegypti is also the vector for  

this disease [52]. 
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