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Abstract Subseasonal forecasts are based on coupled general circulation models that of-7

ten have a good representation of large-scale climate drivers affecting rainfall. Yet, they8

have more difficulty in providing accurate precipitation forecasts. This study proposes a9

statistical-dynamical post-processing scheme based on a bayesian framework to improve10

the quality of subseasonal forecasts of weekly precipitation. The method takes advantage of11

dynamically-forecast precipitation (calibration) and large-scale climate features (bridging)12

to enhance forecast skill through a statistical model. It is applied to the austral summer pre-13

cipitation reforecasts in the southwest tropical Pacific, using the Météo-France and ECMWF14

reforecasts in the Subseasonal-to-seasonal (S2S) database. The large-scale predictors used15

for bridging are climate indices related to El Niño Southern Oscillation and the Madden-16

Julian Oscillation, that are the major sources of predictability in the area. Skill is assessed17

with a Mean Square Skill Score for deterministic forecasts, while probabilistic forecasts of18

heavy rainfall spells are evaluated in terms of discrimination (ROC skill score) and reliabil-19

ity. This bayesian method leads to a significant improvement of all metrics used to assess20

probabilistic forecasts at all lead times (from week 1 to week 4). In the case of the Météo-21

France S2S system, it also leads to strong error reduction. Further investigation shows that22

the calibration part of the method, using forecast precipitation as a predictor, is necessary23

to achieve any improvement. The bridging part, and particularly the ENSO-related informa-24

tion, also provides additional discrimination skill, while the MJO-related information is not25

really useful beyond week 2 over the region of interest.26

Keywords Subseasonal prediction � Bayesian statistical post-processing � Calibration �27

Bridging � El Niño Southern Oscillation �Madden-Julian Oscillation28

1 Introduction29

Subseasonal forecasts (from two weeks to two months) have met growing interest in the30

last few years, following the launch of the WWRP/WCRP Subseasonal-to-seasonal (S2S)31
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prediction project (Vitart et al., 2017). Although it is usually considered a challenging time32

scale due to the chaotic nature of the atmosphere (Vitart, 2004), recent modeling progress33

combined with a better understanding of S2S sources of predictability have led to significant34

improvements in forecast skill (Vitart, 2014).35

These sources of predictability include atmospheric boundary conditions varying slowly36

at subseasonal time scales, such as sea surface temperatures, soil moisture, snow cover and37

sea ice extent (Robertson and Vitart, 2019). They also include atmospheric waves and os-38

cillations, the most important being the Madden-Julian Oscillation (MJO, Zhang, 2013).39

Finally, stratospheric processes, such the Quasi-Biennal Oscillation (QBO, Lim et al., 2019)40

and Sudden Stratospheric Warmings (SSW, Karpechko et al., 2018) are also involved. Un-41

der certain conditions, called ”windows of opportunity”, these sources of predictability may42

enhance prediction skill, not only locally but also remotely through atmospheric teleconnec-43

tions, e.g active MJO conditions enhancing North Atlantic Oscillation (NAO) predictability44

(Vitart, 2014).45

Consequently, a large number of studies show that S2S systems skillfully predict some46

meteorological variables at weeks 3 and 4, for instance temperature (e.g Liang and Lin,47

2018; Tian et al., 2017; Mastrangelo and Malguzzi, 2019; Wang and Robertson, 2019; Pe-48

gion et al., 2019), the MJO (Vitart, 2017; Kim et al., 2018; Marshall and Hendon, 2019)49

and the NAO (Vitart, 2014). On the other hand, although it may extend beyond weather50

time scales, the ability to predict precipitation is often lower than that of prognostic vari-51

ables such as temperature. This has been illustrated for a wide range of geographical areas,52

e.g North America (Vigaud et al., 2017a), the contiguous United States (Tian et al., 2017),53

monsoonal regions (Vigaud et al., 2017b), East Africa (Vigaud et al., 2018), East Asia (Liang54

and Lin, 2018), South America (Coelho et al., 2018), Australia (Hudson et al., 2011; Mar-55

shall et al., 2011; Marshall and Hendon, 2015), the southwest tropical Pacific (Specq et al.,56

2020, in press), and more generally at a global scale (de Andrade et al., 2018; Mastrangelo57

and Malguzzi, 2019). Yet, indications of significant skill can be found beyond week 2 when58

considering specific regions, such as the equatorial Pacific where precipitation is directly59

constrained by the state of El Niño Southern Oscillation (ENSO, de Andrade et al., 2018),60

or when considering specific rainfall indicators, such as the monsoon onset date (Bombardi61

et al., 2017) and the monthly accumulated precipitation (Tian et al., 2017).62

Since S2S systems are generally able to forecast some large-scale climate features satis-63

factorily beyond short-range time scales (e.g Vitart, 2017), and since these climate features64

are known to impact precipitation patterns in wide areas of the globe, it can be assumed65

there is room for improvement of subseasonal precipitation forecasts through statistical post-66

processing. Indeed, as pointed out by Schepen et al. (2014) for the seasonal time scale, large-67

scale climate features in GCMs (General Circulation Models) can be partly disconnected to68

rainfall, because rainfall is influenced by processes that need to be parameterized as they69

occur at a much smaller spatial scale than the GCMs resolution. Similarly, S2S rainfall en-70

semble forecasts generally exhibit biases related to systematic errors and are poorly reliable71

(in terms of probabilities) beyond week 2 (e.g Vigaud et al., 2017a).72

On the other hand, there is a growing demand of subseasonal forecasts among a wide73

variety of users, such as the energy, agriculture, water management, finance and insurance74

sectors (Hudson et al., 2011; White et al., 2017). These users obviously require skillful, re-75

liable and bias-free forecasts. As a result, statistical correction and post-processing of S2S76

forecasts is a crucial matter, in particular for a parameterized variable like rainfall. Two77

general and complementary approaches can be developed for this post-processing: calibra-78

tion and bridging (Schepen et al., 2014). A statistical-dynamical post-processing scheme is79

called calibration when the predictor for the observed variable (i.e precipitation) is the raw80



Improving subseasonal precipitation forecasts through a statistical-dynamical approach 3

variable itself as forecast by the dynamical forecasting system. It is referred to as bridging81

when the predictors are large-scale climate features, that are also forecast by the dynami-82

cal system. The link between predictors and the predicted variable is established through a83

statistical model that may have the same mathematical formulation for both calibration and84

bridging.85

Calibration and bridging have been jointly applied in a large number of studies related to86

seasonal forecasting of temperature or precipitation (e.g Schepen et al., 2012, 2014, 2016;87

Strazzo et al., 2019), and recent studies have started carrying out this work for S2S time88

scales. In terms of calibration-oriented approaches for precipitation, Li et al. (2019) have89

proposed a bias correction methodology for S2S precipitation at the scale of hydrological90

catchments, while Vigaud et al. (2019) have proposed a spatial correction methodology for91

multimodel subseasonal precipitation forecasts using local Laplacian eigenfunctions. Like-92

wise, Doss-Gollin et al. (2018) have tested several Model Output Statistics (MOS) methods93

for S2S precipitation prediction over central South America that also lead to better cali-94

bration. On the other hand, similar to the bridging approach, statistical-only subseasonal95

forecasts based on large-scale climate features have been developed using machine learning96

(Cohen et al., 2019, for temperature and precipitation) or empirical models (Johnson et al.97

2014 for temperature, Baggett et al. 2018 for tornadoes and hail).98

In this study, we introduce a simple bayesian statistical-dynamical scheme dealing with99

both calibration and bridging in the same framework. This scheme is applied to precipita-100

tion forecast in the southwest tropical Pacific (SWTP) with the Météo-France and ECMWF101

S2S systems. It uses ENSO and MJO-related predictors for bridging, along with the fore-102

cast precipitation at grid point level for calibration. The SWTP domain ranges from 110�E103

to 200�E in longitude, and 30�S to 0� in latitude. Rainfall in this area is a crucial matter104

with the regular occurrence of tropical cyclones and heavy rainfall spells (McGree et al.,105

2014) but also droughts (McGree et al., 2016), affecting Pacific island territories as well as106

Australia. The focus is put on the austral summer season (December, January and February)107

as it corresponds to the peak season for MJO activity in the Southern Hemisphere (Zhang,108

2005), to the wet season in southwest Pacific island territories and to the monsoon season109

in Northern Australia (Marshall and Hendon, 2015). It has been widely demonstrated that110

precipitation patterns in the area are strongly influenced both by ENSO, as a slowly-varying111

process for the subseasonal time scales, and by the MJO (e.g de Andrade et al., 2018). Since112

these phenomena are recognized to be well represented in subseasonal forecasting systems,113

using them as predictors in the statistical-dynamical scheme should provide additional in-114

formation and improve precipitation forecast skill compared to the raw precipitation output115

from the numerical models.116

This article is structured as follows. Section 2 is dedicated to the description of the S2S117

reforecasts and the rest of the data used for this study. Section 3 goes into details of the118

statistical-dynamical approach implemented here and introduces the framework for forecast119

verification and comparison. Section 4 presents the main improvements obtained with the120

statistical-dynamical scheme in terms of forecast skill and reliability compared to the raw121

S2S forecasts, while Section 5 discusses the relative importance of each large-scale predictor122

used for bridging. Finally, Section 6 summarizes and discusses the main results of the article.123
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Table 1 Reforecast attributes for the Météo-France and ECMWF systems

Attributes ECMWF MF

Time range Day 1-46 Day 1-61
Atmospheric resolution T639/319 L91 T255L91
Reforecast On the fly Fixed
Reforecast period Past 20 yrs (1996-2015) 1993-2014
Reforecast frequency Two per week Four per month
Ensemble number 11 15
Coupling Ocean and sea ice Ocean and sea ice

Table 2 Correspondence between the Météo-France and the ECMWF reference start dates

MF 12-01 12-08 12-15 12-22 01-01 01-08 01-15 01-22 02-01 02-08 02-15 02-22

ECMWF 12-01 12-08 12-15 12-22 12-31 01-07 01-14 01-21 02-01 02-08 02-15 02-22

2 Data124

2.1 S2S reforecasts125

The ensemble reforecasts from Météo-France (MF) and the European Centre for Medium-126

range Weather Forecasts (ECMWF) were extracted from the S2S database (Vitart et al.,127

2017). These two systems are both based on coupled GCMs and their main features are128

summarized in Table 1. Their output data was extracted on a common 1.5� grid on the129

SWTP domain (110�E-200�E; 30�S-0�). The 1.5� resolution corresponds to the common130

initial archiving resolution of the S2S database and has already been adopted in other S2S131

studies (e.g Vigaud et al., 2017a).132

In order to make a proper comparison between these two systems, it is essential to133

choose a common reforecast period for verification and implementation of the statistical-134

dynamical approach. The MF system uses a fixed reforecast period (1993-2014) while the135

ECMWF system updates its reforecast for every real-time forecast by running the system at136

the same calendar date over the past 20 years. We therefore chose to consider the 19-year137

reforecast period 1996-2014, using the 2016 version of the ECMWF reforecasts.138

In addition, we restrained our selection to the start dates in the DJF season. However,139

these start dates also differ between the two systems (e.g MF starts on January 8 while140

ECMWF starts on January 7) and ECMWF has actually more start dates (two per week) than141

MF does (four per month). As we chose to keep all DJF start dates from the MF reforecast,142

we only retained the closest corresponding start dates in the ECMWF reforecast in order143

to compare the two systems’ performance with the same sample size. This correspondence144

is specified in Table 2. This leads to 216 start dates (18 years x 3 months x 4 startdates145

per month) under consideration for each S2S system. Both systems are evaluated separately146

on weekly windows after discarding the first four days since they belong to short-range147

forecasting. If d is the day of the start date, the weekly verification calendar includes week148

1 ([d + 5;d + 11]) to week 4 ([d + 26;d + 32]).149
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2.2 Precipitation data150

S2S precipitation data for MF and ECMWF is extracted on the 1.5� grid over the domain151

110�E-200�E; 30�S-0� (60 x 21 grid points) and averaged on weekly windows according to152

the procedure described in Section 2.1. It is verified against a reference precipitation dataset153

called Multi-Source Weighted-Ensemble Precipitation (MSWEP) version 1.2 (Beck et al.,154

2017). This dataset is available for the 1979-2015 period and covers the whole globe on a155

0.25� grid. It combines various precipitation sources: satellite data, World Meteorological156

Organization Global Telecommunication System (WMO GTS) rain gauges and reanalysis.157

MSWEP data was interpolated on the 1.5� reforecast grid through conservative remapping,158

and temporally averaged along the same weekly windows as the reforecasts.159

2.3 Large-scale predictors160

In this study, we considered the two most widely recognized sources of subseasonal pre-161

dictability for precipitation in the SWTP, ENSO and the MJO. We decided to characterize162

the ENSO state at a given day by the sea surface temperature anomalies, spatially-averaged163

over the standard Niño 3.4 box (170�W-120�W; 5�S-5�N), and temporally-averaged over164

the previous 90 days. This index will be noted N34 hereafter. Other ENSO-related indices165

were tested but showed little difference for the purpose of our statistical-dynamical scheme.166

As for the MJO, it is represented by the two indices RMM1 and RMM2 defined by Wheeler167

and Hendon (2004) and corresponding to the first two principal components of the mul-168

tivariate principal component analysis carried out on the meridionally-averaged fields of169

Outgoing Longwave Radiation (OLR) and zonal winds at 850 (U850) and 200 hPa (U200)170

in the 15�S-15�N equatorial band.171

The determination of the indices in the S2S reforecasts first requires to compute anoma-172

lies of a given field (SST for N34, OLR, U850 and U200 for RMM1 and RMM2). The173

anomalies are calculated for every daily lead time by leave-one-year-out cross-validation:174

for a given start date in a given year and at a given lead, the anomaly is the variable in the re-175

forecast minus the averaged variable at this start date and lead in the reforecasts of all other176

years. Moreover, the large-scale predictors are also computed in the ERA-Interim reanalysis177

(Dee et al., 2011) to train the statistical model with real-world data. In order to be consistent178

between reforecast and reference data, the anomalies in ERA-Interim are computed with179

the same method by subtracting the average variable for the same calendar day in all other180

years of the 1996-2014 period. Finally, the computation of the indices in the S2S refore-181

casts often requires to subtract previous values averaged over a period that is longer than the182

length of the runs (90 days for N34, 120 days for MJO indices). Then, for the n-th day of183

the run, we substract the average value composed of the n�1 previous days of the run and184

the 90� (n�1) (respectively 120� (n�1)) days prior to the start dates in ERA-Interim.185

Using this procedure, the MJO indices in the S2S reforecasts are computed following186

the recommendations of Gottschalck et al. (2010) and the ECMWF technical note available187

on the S2S website (ECMWF, 2017). As for the daily N34 index at day d, it is obtained by188

averaging the spatially-averaged SST anomalies over the 90 days from day d� 89 to day189

d. Finally, although these indices are initially computed as daily values, they are averaged190

over the weekly windows of the S2S reforecast calendar (described in Section 2.1) for the191

implementation of the statistical-dynamical scheme.192
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3 Methods193

3.1 Statistical-dynamical prediction194

3.1.1 General framework195

The bayesian approach proposed in this study is similar to that proposed by Coelho et al.196

(2004) that was also applied and completed by Luo et al. (2007), denoted L07 hereafter.197

Since this approach was initially designed for seasonal forecasting, we have adapted it to198

subseasonal forecasting. Let’s consider that we intend to forecast the distribution of a pre-199

dictand variable y conditional upon a set of n predictors x = (x1;x2; :::;xn), noted p(yjx).200

According to Bayes’ theorem,201

p(yjx) =
p(xjy)p(y)

p(x)
: (1)

p(y) is the prior distribution of the predictand y before any information is known from a202

specific forecast. p(xjy) is called the likelihood: it expresses how x is distributed when the203

predictand y is known. p(yjx) is the updated distribution of y when information about x is204

available.205

L07 have shown that an explicit formulation of p(yjx) is possible in a gaussian frame-206

work under the following assumptions:207

1. The prior distribution p(y) is normal: p(y)�N (mp;s2
p)208

2. For each predictor xi, p(xijy) is a normal distribution determined through a linear regres-209

sion:210

p(xijy)�N (ai +biy;s2
i ) ; (2)

where ai is the intercept, bi is the slope and s2
i is the variance of the residuals.211

3. The residuals in the linear regressions from Equation (2) are independent from each212

other.213

Then, according to L07, p(yjx) also follows a normal distribution, noted p(yjx)�N (mt ;s
2
t ),214

and the parameters of this conditional distribution are expressed as follows:215

1
s2

t
=

1
s2

p
+S

n
i=1

b2
i

s2
i

(3)

mt

s2
t

=
mp

s2
p

+S
n
i=1

b2
i

s2
i

(
xi�ai

bi
) (4)

3.1.2 Scheme implementation216

In this study, the predictors are the weekly-averaged forecast large-scale indices N34, RMM1,217

RMM2, and the weekly-averaged forecast rainfall r f . The predictand variable is the weekly-218

averaged observed rainfall ro. Assumption n°3 in the previous Section 3.1.1 suggests that219

any dependency between the predictors should be removed. For this purpose, since it has220

been widely shown that cross-timescale interactions between ENSO and the MJO might ex-221

ist (e.g Doss-Gollin et al., 2018), it should be relevant to use the principal components of222
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(N34,RMM1,RMM2) instead of the original indices. However, on a practical point of view,223

this approach proves to be less relevant in terms of skill improvement (see Supplementary224

material Figure S1, as compared to Figure 2). Then, it will not be further applied and the225

original large-scale indices are kept as predictors.226

Furthermore, as in L07, we need to overcome the fact that the rain rates ro and r f are227

non-gaussian. This issue is tackled in a similar manner: the weekly rain rates ro and r f228

are converted into normally distributed variables of mean 0 and variance 1, noted r̂o and229

r̂ f hereafter. This transformation is made up of two steps using the equal-quantile method:230

application of the climatological Cumulative Distribution Function (CDF) of rain rates, fol-231

lowed by the inverse CDF of the normal distribution N (0;1).232

Such a transformation is always mathematically feasable and leads to a normally-distributed233

variable most of the time. One limitaton appears in dry areas where the CDF for a 0 mm rain234

rate is far greater than the 0% quantile, but it only applies to a small fraction of the SWTP do-235

main (continental Australia, see Section 4.2). In such cases, the transformed variable cannot236

be fully gaussian as it does not cover the full range of the normal distribution. For instance,237

if 0 mm represents the lower 20% of the climatology, the transformation will necessarily238

lead to values greater than the 20th percentile of the N (0;1) distribution (i.e ��0:84).239

The climatological CDF of rain rates is determined separately for reforecast and obser-240

vations with a leave-one-year-out cross-validation approach similar to Vigaud et al. (2017a).241

In the observations, for a given target week, the same calendar weeks in all other 18 years242

are considered, along with the week before and the week after. This leads to a climatologi-243

cal sample of 18�3 = 54 values for the target week, from which an empirical CDF is built.244

Likewise, the S2S reforecast climatology for a given year, start date and lead time is con-245

structed by taking the reforecasts for the same start date and lead time considering the 18246

remaining years and all ensemble members. This leads to a climatological sample of 18�n247

values to establish the empirical CDF, where n the ensemble size (15 members for MF and248

11 for ECMWF).249

The bayesian scheme described in Section 3.1.1 is implemented with y = r̂o and x =250

(r̂ f ;N34;RMM1;RMM2). For the sake of robustness, we take the ensemble mean of the251

forecast predictors, including r̂ f , and do not consider the spread of the predictor around252

the ensemble mean. According to the normalizing transformation from ro to r̂o, the prior253

distribution of r̂o is assumed to be N (mp = 0;s2
p = 1). Equations (3) and (4) are applied254

to deduce the conditional distribution p(r̂ojr̂ f ;N34;RMM1;RMM2). If needed, the resulting255

mean mt can be back-transformed to obtain a precipitation forecast in mm, by using the CDF256

of N (0;1) followed by the inverse climatological CDF of observations.257

3.1.3 Uncertainty in the predictors’ forecasts258

A major difference between the approach in L07 and ours is the inclusion of large-scale259

climate features as predictors (bridging), while they only used the forecast precipitation as260

a predictor for the observed precipitation. As a result, we have included a two-term decom-261

position of the uncertainty s2
i in the relationship (defined in Equation (2)) between each262

predictor xi and the predictand y = r̂o. There are actually two possible values for predictor263

xi: its real-world value in the reference data, noted xio, and its forecast value, noted xi f . The264

benefits of the predictor might be limited by its intrinsic predictive ability, but also by the265

fact that S2S systems do not forecast it with sufficient quality.266

The intrinsic predictive ability is established in the reference data with the linear regres-267

sion:268
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p(xiojy)�N (aio +bioy;s2
io) : (5)

The ability of the S2S systems to forecast the predictor xi is assessed in a second linear269

regression:270

p(xi f jxio)�N (ai f +bi f xio;s2
i f ) : (6)

The composition of the normal distribution from Equation (5) followed by the normal271

distribution from Equation (6) leads to the resulting expressions of the parameters ai, bi and272

s2
i from Equation (2):273

ai =ai f +bi f aio (7)

bi =bi f bio (8)

s
2
i =b2

i f s
2
io +s

2
i f (9)

s2
i is the sum of the uncertainty in the prediction of xi by the S2S systems (i.e the error),274

noted s2
i f , and an uncertainty term which is the intrinsic uncertainty of the predictor s2

io,275

multiplied by bi f . bi f is proportional to the correlation score of the forecast predictor xi f276

with the observed predictor xio. When the predictor xi is rainfall itself, s2
io = 0 and bio = 1277

so the only source of uncertainty is the forecast error s2
i f . Both linear regressions from278

Equations (5) and (6) are fitted for each lead time using leave-one-year-out cross-validation.279

3.2 Assessing predictor importance280

Section 5 discusses the respective role of the each predictor in the predictive ability of the281

statistical-dynamical model. The importance of each predictor is assessed using likelihood-282

ratio tests (Buse, 1982) in a forward selection mode. Our predictive model is described by283

Equation (4). Because the prior probability distribution of r̂o has mean mp = 0, the predictive284

model can be re-written:285

r̂o = S
4
i=1s

2
t

b2
i

s2
i

(
xi�ai

bi
) ; (10)

This model consists in four predictive terms, the added value of which needs to be286

estimated. Similar to a stepwise forward predictor selection for a classical linear regression287

(Wilks, 2006), we start from a model where r̂o is a constant and compare this model with288

all the other models for which we consider each predictive term s2
t

b2
i

s2
i

( xi�ai
bi

) separately.289

The most important of the predictive terms is the one which returns the smallest p-value in290

the likelihood-ratio test when comparing with the constant model. In the next step of the291

procedure, we start from the new model including the most important predictive term, and292

we determine which of the remaining terms is the second most predictive, using the same293

p-value criterion. The procedure ends when all predictive terms have been included and it294

gives the order of importance of each predictive term. Using a p-value stop criterion, set295

at 0.05 in this study, also enables to eliminate predictive terms that do not bring additional296

information.297

This procedure is carried out at each grid point with two sets of predictors:298
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1. Large-scale predictors N34, RMM1 and RMM2 only, in the reanalysis data, considering299

all lead times together300

2. All predictors (including r̂ f ), as forecast by S2S systems, at each lead time separately301

The first option aims at identifying where each predictor influences precipitation in real-302

world data. The second enables to identify, at each lead time, which predictor actually brings303

information to the statistical-dynamical approach.304

3.3 Verification305

We use a verification framework with a deterministic and a probabilistic score, computed306

at every lead time (week 1 to week 4). This framework partly re-uses and adapts the verifi-307

cation procedure of subseasonal weekly accumulated precipitation predictions proposed by308

(Coelho et al., 2018) and called ”all season hindcast verification”. Deterministic verification309

is carried out with the Mean Square Skill Score (MSSS), which is defined as310

MSSS = 1� MSE
MSEclim

; (11)

where MSE is the mean square error of the reforecasts, and MSEclim is the mean square311

error of a climatological forecast that is constructed from the observations by cross-validation312

similarly to the procedure detailed in Section 3.1.2. When computing the MSSS, a simple313

cross-validated bias correction is applied to the raw forecasts so that the Mean Square Error314

does not include any systematic error that would lower the scores without being related to315

the predictive ability of the systems.316

We also consider probabilistic forecasts of a binary event corresponding to weekly pre-317

cipitation above the climatological upper quintile, because our main objective is to assess318

and improve the ability of S2S systems to detect spells of heavy rainfall. The forecast prob-319

ability of the upper quintile in the raw S2S forecasts is evaluated by taking the fraction of320

ensemble members for which the forecast value exceeds the upper quintile threshold. For321

the output of the statistical-dynamical scheme, the forecast probability corresponds to the322

probability that a variable following a normal distribution with the parameters in Equations323

(3) and (4) exceeds the upper quintile of the N (0;1) normal distribution (i.e � 0:84).324

The discrimination of the probabilistic forecasts (i.e whether the forecasts correctly325

make the difference between occurrence and non-occurrence of the binary event) is assessed326

with the area under the Relative Operating Characteristic (ROC) curve A. A is rescaled as327

the ROC skill score (ROCSS), i.e328

ROCSS = 2A�1 ; (12)

so that values are comprised between 0 and 1 for forecasts that are more skillful than cli-329

matology. Finally, we also assess the reliability of the probabilistic forecasts using reliability330

diagrams and the reliability component of the Brier Score (Murphy, 1973).331

Moreover, the verification scores MSSS and ROCSS will either be computed as a unique332

score at the scale of the whole SWTP domain, for the sake of brevity, or at grid point level.333

When the ROCSS is shown on maps, the value at a given grid point is actually computed by334

pooling the forecast/observation pairs for a neighborhood of nine grid points (3�3) around335

the central grid point. This enables to reduce spatial noise and to increase robustness of a336

comparison between the ROCSS of two forecasts.337
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Fig. 1 Mean Square Skill Score at the scale of the SWTP basin for the subseasonal reforecasts with vari-
ous statistical-dynamical post-processing: raw S2S (solid black line), calibrated (dashed black line), bridged
(dashed red line) and calibrated + bridged (solid red line). Left: MF S2S system. Right: ECMWF S2S system.
Note that a cross-validated bias correction has been performed to the raw S2S systems before computing the
MSSS.

Such a comparison between forecast A and forecast B is made by taking the difference338

ROCSSB�ROCSSA. For this difference to be considered significant, we set two simultane-339

ous conditions:340

1. The greater of ROCSSA and ROCSSB must be significant at the 95% level according to a341

Mann-Whitney U test (Wilks 2006)342

2. The greater of ROCSSA and ROCSSB must be significantly greater than the other one, at343

the 95% level, according to a one-sided DeLong test (DeLong et al., 1988)344

4 Results345

4.1 Comparison over the whole domain346

Four types of subseasonal reforecasts of precipitation are assessed in this section: the raw347

S2S reforecasts, the calibrated reforecasts (forecast precipitation r̂ f is the only predictor),348

the bridging reforecasts (large-scale predictors N34, RMM1 and RMM2 without forecast349

precipitation) and the calibration + bridging reforecasts (all predictors r̂ f , N34, RMM1 and350

RMM2). The aim is to have an overview of the impact of each statistical-dynamical approach351

on reforecast skill. For the sake of brevity, results are shown with skill scores computed by352

pooling all the grid points in the SWTP domain (see Section 3.3).353

Figure 1 illustrates such a comparison for the Mean Square Skill Score, once the mean354

bias has been removed from the raw S2S reforecasts (solid black line). The first notable355

result from Figure 1 is that the bridging approach alone leads to the same amount of errors356

as a climatological forecast (MSSS = 0), for both the MF and ECMWF systems. A second357

notable result is that the raw MF system has apparently such large residual errors that it358

does not really perform better than climatology, even after the simple bias correction. On359

the contrary, this is not the case for the raw ECMWF system. A third important point is360

that all approaches involving calibration exhibit good performances and less errors than361

climatology up to week 4. This leads to a drastic improvement for the MF system, but362

not for the ECMWF system. Indeed, the ECMWF system makes actually less error with363

the simple bias correction than with any statistical-dynamical approach, a result which is364

presumably due to the already good performance of the raw ECMWF reforecasts in terms365
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Fig. 2 ROC skill score for the upper quintile of precipitation at the scale of the SWTP basin for the sub-
seasonal reforecasts with various statistical-dynamical post-processing: raw S2S (solid black line), calibrated
(dashed black line), bridged (dashed red line) and calibrated + bridged (solid red line). Left: MF S2S system.
Right: ECMWF S2S system. The differences between the solid black line, the dashed black line and the solid
red line are always significant at the 95% according to a one-sided DeLong test.

of MSSS. Finally, for both systems, there does not seem to be any added value of calibration366

+ bridging compared to calibration alone, suggesting that bridging does not bring any error367

correction.368

Figure 2 shows the same comparison for the ROC skill score of the upper quintile of369

precipitation. For this score, results are similar for both S2S systems: the performance of the370

calibrated reforecasts is better than that of the raw reforecasts, but the calibrated reforecasts371

are also improved by the calibration + bridging approach, at least for the later lead times372

(weeks 3 and 4). However, bridging alone leads to an almost constant skill score (no varia-373

tion with lead) that is less than the scores obtained by any other approach. We find that this374

constant score actually illustrates a baseline discrimination ability related to the N34 pre-375

dictor. Indeed, this predictor remains almost constant, and very close to the initial reference376

value, in the first four weeks of the S2S runs (not shown).377

The results from Figures 1 and 2 suggest that calibration is useful to error correction378

to some extent, when the raw forecasts exhibit large errors, and it is also useful to improve379

the detection of heavy rainfall events. In the meantime, bridging brings additional value for380

discrimination, provided it is combined with calibration. These results are also confimed381

on four other S2S systems (see Supplementary material, Figures S2 and S3). Yet, it must382

be acknowledged that the proposed approach is not able to make up for the skill difference383

between the input dynamical models, i.e ECMWF remains better than Météo-France even384

after statistical post-processing.385

4.2 Comparison of discrimination ability at grid point level386

Figures 3 and 4 represent the difference in terms of ROC skill score between the calibration387

+ bridging reforecasts and the raw S2S reforecasts, using the MF and ECMWF systems388

respectively. The differences are shown alongside the initial skill of the raw S2S system,389

and the ROC skill scores are computed by pooling the grid points over a 3� 3 grid point390

neighborhood as explained in Section 3.3. In agreement with Figure 2, the calibration +391

bridging approach leads to a significant improvement of forecast skill in a large fraction of392

the domain.393
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Fig. 3 Left: ROC skill score for the upper quintile of weekly precipitation in the MF S2S reforecast. Right:
Difference in ROC skill score between the calibration + bridging statistical-dynamical scheme and the raw
MF S2S reforecast. The ROC skill score are computed by pooling values over a 3� 3 neighborhood. Grid
points in white correspond to grid points where the difference is not significant according to the two criteria
detailed in Section 3.3.

The benefits of using the statistical-dynamical approach appear to increase with lead394

time. This is not suprising because the raw reforecasts have more detection failures and are395

more noisy at later lead times. Consequently, there is more room for improvement through396

calibration, that corrects distribution errors, and bridging, that dampens the importance of397

spurious high-frequency variability relative to more relevant lower frequency variability.398

The main regions of improvement are the Maritime Continent, the southern oceanic part of399

the domain (including New Caledonia at 166�E-21�S, Vanuatu at 168�E-17�S and Fiji at400

178�E-18�S) and the western Australian coast.401

One notable exception is a part of continental Australia for which there is no improve-402

ment or even a decrease in skill, depending on the lead time. Further investigation (not403

shown here) found this is related to the dryness of the area, for which the weekly pre-404

cipitation distribution is highly positively skewed. When transforming precipitation into a405

gaussian variable, small differences between precipitation values in mm may lead to larger406

differences in the transformed precipitation. These differences in precipitation are not neces-407

sarily related to important differences in large-scale conditions. They lead to non-significant408

or inconsistent relationships between transformed precipitation and large-scale predictors,409

such as N34, when fitting the linear regression in Equation (5), hence the degraded forecast410

skill. This is a limitation of our methodology that only affects a restricted part of the chosen411

domain.412
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Fig. 4 Left: ROC skill score for the upper quintile of precipitation in the ECMWF S2S reforecast. Right:
Difference in ROC skill score between the calibration + bridging statistical-dynamical scheme and the raw
ECMWF S2S reforecast.

4.3 Reliability of probabilistic reforecasts413

The overall reliability of the raw S2S reforecasts, the calibration and the calibration + bridg-414

ing reforecasts is evaluated in Figures 5 and 6, at the scale of the whole domain. These di-415

agrams are completed with the reliability and the resolution components of the Brier Score416

in Table 3. The reliability component is negatively oriented (the smaller the more reliable)417

while the resolution component is positively oriented. The two statistical-dynamical ap-418

proaches clearly outperform the raw S2S reforecasts for both reliability and resolution. The419

result concerning resolution was foreseeable from Figures 2, 3 and 4, given that resolution420

and discrimination (as assessed by the ROC skill score) are ”two sides of the same coin”421

(Bröcker, 2015), but the reliability improvement remained to be demonstrated. Moreover,422

these improvements are notable for all lead times. The comparison between the calibration423

and calibration + bridging diagrams would at first sight suggest that calibration alone, with-424

out bridging, should be preferred because it leads to more reliable forecasts. However, this425

would happen at the expense of resolution which is better when bridging is added, as could426

have been inferred from Figure 2. Thanks to the information from large-scale predictors, the427

calibration + bridging scheme is more skillful at detecting heavy precipitating events but it428

also tends to be more overconfident.429



14 Damien Specq, Lauriane Batté

Table 3 Reliability and resolution components (�102) of the Brier Score (whole domain) for the upper
quintile of weekly precipitation at weeks 1 to 4. Reliability is negatively oriented and resolution is positively
oriented.

Week 1 Week 2 Week 3 Week 4

Rel. Res. Rel. Res. Rel. Res. Rel. Res.

MF
Raw 1.41 2.13 0.95 1.07 0.79 0.74 0.81 0.60
Calib. 0.020 2.34 0.0089 1.27 0.020 0.87 0.037 0.70
Calib.+bridging 0.076 2.63 0.098 1.58 0.14 1.12 0.16 0.92

ECMWF
Raw 0.61 3.44 0.81 1.39 0.89 0.93 0.87 0.77
Calib. 0.014 3.66 0.005 1.62 0.010 1.07 0.015 0.90
Calib.+bridging 0.046 3.70 0.092 1.77 0.11 1.25 0.15 1.02
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Fig. 5 Comparison of the reliability diagrams (whole domain) for the upper quintile of weekly precipitation,
between the raw MF S2S reforecast (blue), the calibration reforecast (green) and the calibration + bridging
reforecast (red), at week 2 (left) and week 3 (right). The forecast frequency in each probability bin is repre-
sented below on the bar plots for each of reforecasts, with the same color code. Bins with less than 1% of the
total number of forecasts are not plotted.
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Fig. 6 Same as Figure 5 for the ECMWF S2S system. Bins with less than 1% of the total number of forecasts
are not plotted.

5 Role of the large-scale predictors430

5.1 Theoretical relative added value431

Following the methodology described in Section 3.2, the theoretical importance of each432

predictor N34, RMM1 and RMM2 in the reference datasets is assessed with a stepwise433

forward selection scheme. For each of these predictors, the first column in Figure 7 shows the434

coefficient of the linear regression in Equation (5) at each grid point, if it is significant at the435

95% level. This is an estimation of the absolute role that each predictor plays individually.436

The second column in Figure 7 shows the order in which the predictive term in Equation437

(10), associated to a given predictor, is selected. This is an estimation of the relative role438

of each predictor in the bridging part of the approach. Grid points in white correspond to439

grid points where the predictive term is considered not to bring any additional information440

according to the p-value threshold of 0.05 mentioned in Section 3.2.441

The key result is that the N34 predictor related to ENSO is the first large-scale source of442

information over most of the SWTP, mainly in the southern oceanic part and in the north-443

eastern equatorial region. If not ENSO, the most important predictor is quite often the first444

MJO index RMM1, that is the main source of information in the northwestern part of the445

domain but is also a significant source of information in a region that extends southeastward446
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Fig. 7 Left: linear regression coefficient of each predictor against observed rainfall r̂o. Grid points are in
white if the coefficient is not significant at the 95% level.
Right: Order of selection for each predictor in a stepwise forward selection scheme when considering large-
scale predictors only in reference data. Grid points in white correspond to grid points where adding the
predictor leads to a p-value greater than 0.05 in the likelihood-ratio test.

from the Maritime Continent to the subtropics and encompasses Pacific island territories447

such as Vanuatu, New Caledonia and Fiji. As for RMM2, it is often a secondary source of448

information bearing some added value in the equatorial and eastern part of the domain. The449

patterns of significant added value for N34, RMM1 and RMM2 are similar to the regression450

patterns of rainfall against these indices, as illustrated in the first column of Figure 7 and451

also in several other studies (e.g de Andrade et al., 2018, Figure 2).452

5.2 Added value in the statistical-dynamical scheme453

On account of the decreasing quality of rainfall and MJO forecasts with lead time, it is454

expected that the importance of the large-scale predictors as illustrated in Section 5.1, but455

also the importance of the calibration predictor r̂ f , might change as we get further away456

from initialization. This aspect is investigated in Figure 8 with the order of importance of457

the four predictors at each lead time in the statistical-dynamical approach, when applied to458

the MF system. Results are similar for the ECMWF system (not shown). Because forecast459

precipitation was expected to be the n�1 predictor most of the time, we shifted the color460

code of Figure 7 (second column) from ranks 1-3 to 2-4, and added an extra color for the461

most important predictor.462

At weeks 1 and 2, the forecast precipitation (i.e calibration predictor) is indeed the first463

source of information in the statistical-dynamical approach almost over the whole domain.464

In the meantime, the N34 predictor often comes second after forecast precipition, at the465

locations where it is identified as a useful predictor according to Figure 7. The main result466

is that the prominence of forecast precipitation at these locations shrinks with lead time,467



Improving subseasonal precipitation forecasts through a statistical-dynamical approach 17

Fig. 8 Order of selection for each predictor in a stepwise forward selection scheme, applied at each lead time
for the calibration + bridging scheme applied to the MF system. Forecast rainfall r̂ f is also included in the
selection.

while ENSO gradually becomes the most relevant predictor. As a result, at week 4, N34 has468

become the n�1 predictor for the majority of grid points. This indicates that, as we go into469

the subseasonal range, the statistical relationship between N34 and rainfall actually better470

captures the ENSO-related predictable signal than the coupled dynamics of the numerical471

model.472

The notable exceptions where N34 is challenged by MJO indices are locations where473

the RMM1 predictor or, to a lesser extent, the RMM2 predictor, are theoretically good pre-474

dictors according to Figure 7. This corresponds mostly to the region between the Maritime475

Continent and northern Australia, where ENSO does not account for much skill. In this area,476

RMM1 is the second most important predictor at weeks 1 and 2 (after precipitation), and it477

becomes the most important at weeks 3 and 4. As for RMM2, it plays a similar role over478

the land grid points of New Guinea. Figure 7 suggested that these two indices could also479

be sources of information for wider areas : RMM1 can theoretically help predict rainfall480

in a southeastward-extending region ranging from New Guinea to New Caledonia, and the481

same can be said of RMM2 along the South Pacific Convergence Zone (SPCZ) track. Yet,482

their added value in these regions at the subseasonal time scales appears to be very lim-483

ited or non-existent. Admittedly, RMM1 comes as second or third predictor in a large zone484

around New Caledonia at week 1, but this influence shrinks with lead time and ceases to485

be at weeks 3 and 4. A similar effect can be noted for RMM2 over Cape York peninsula in486

northern Australia.487

6 Conclusion488

We have developed and applied a statistical-dynamical scheme to post-process subseasonal489

forecasts of precipitation in a bayesian framework. Our framework encompasses a calibra-490

tion approach that uses the forecast precipitation as a predictor in a statistical model. It491

also includes bridging aspects under the assumption that large-scale climate features, ENSO492

and the MJO, are better represented by S2S systems than precipitation itself. Because these493

large-scale climate features are known to have a strong and direct impact on rainfall on the494

SWTP domain, we chose this region as a relevant test bed for our scheme.495
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In this region, the statistical-dynamical approach definitely proves valuable to improve496

the probabilistic reforecast quality, especially in terms of discrimination for the occurrence497

vs non-occurrence of a binary event, e.g the upper quintile of weekly precipitation. How-498

ever, when it comes to deterministic forecasting, the benefits of the approach are more con-499

trasted : depending on the S2S system, it can perform better or worse than a simple bias500

correction. Therefore, the proposed statistical-dynamical scheme should preferably be ap-501

plied in a probabilistic forecasting context. These results are based on the Météo-France502

and ECMWF systems, but were confirmed with four other S2S systems (see Supplementary503

material, Figures S2 and S3), for which the qualitative benefits are close to those obtained504

with Météo-France.505

The calibration part of the method is the most crucial step as it accounts alone for error506

reduction, provides reliable probabilistic forecasts, and reasonably improves their discrim-507

ination. Yet, adding information from the large-scale predictors is the source of an extra508

discrimination ability for heavy rainfall events. As a result, although calibration leads to509

good results on its own, the best of the statistical-dynamical approaches proposed in this510

study for probabilistic forecasting remains the calibration + bridging approach.511

The benefits of using the large-scale predictors actually vary across space and lead times.512

Unsurprisingly, we have seen that a climate index provides valuable information where the513

corresponding phenomenon impacts rainfall. To this respect, this article confirms the known514

impacts of ENSO and the MJO at some locations, e.g the MJO over the Maritime Continent.515

It also highlights locations that are significantly impacted by the MJO while they do not lie516

directly within the MJO envelope track, for instance the zone extending southeastward from517

New Guinea to New Caledonia.518

In these locations where MJO-related theoretical predictability is more limited, the519

degradation of the MJO forecast quality with lead time is such that the MJO predictors520

do not bring a real predictive improvement of the statistical-dynamical model beyond week521

2. The reason why bridging is still profitable at weeks 3 and 4 in these regions is related522

to the ENSO predictor, that exhibits little variability throughout the forecast, but does not523

correspond to subseasonal climate variability.524

This result suggests that, in the case of SWTP precipitation forecasts, it is difficult to tap525

into the predictability of large-scale subseasonal variability (the MJO) to obtain improve-526

ments in aggregated scores through bridging after week 2. However, it does not exclude527

the existence of forecasts of opportunity for which particular precipitation events might528

be predictable three weeks in advance or more (e.g Doss-Gollin et al., 2018; Lin et al.,529

2019), thanks to subseasonal signals like the MJO. Moreover, it also indicates that other530

slowly-varying sources of seasonal predictability, analogous to ENSO, could be used to im-531

prove subseasonal forecasts. These assumptions could now be tested with similar statistical-532

dynamical approaches by considering other locations, predictors and predicted variables.533

For example, the Boreal Summer Intraseasonal Oscillation Index could be tested as a sub-534

seasonal predictor for precipitation in the Asian summer monsoon region (Lee et al., 2013),535

while dynamical weather types could be tested to improve subseasonal prediction of tem-536

peratures in Europe (Cassou et al., 2005; Ardilouze et al., 2017).537

Finally, some findings in this study point that, beyond statistical post-processing tech-538

niques, the improvement of numerical prediction systems is still necessary for the advance-539

ment of S2S prediction. This is illustrated by the fact our method does not compensate for the540

initial difference in skill between the Météo-France and ECMWF systems, while it would if541

post-processing alone were sufficient to reach the theoretical skill limit. Nonetheless, post-542

processing proves valuable to diagnose the strengths and weaknesses of S2S systems. For543

instance, by revealing that a dynamically-forecast large-scale predictor (ENSO) can be more544
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informative than dynamically-forecast precipitation iteself, it shows that higher skill could545

actually be obtained if prediction systems directly took advantage of their well-predicted546

signals. This advocates for a joint development of the S2S systems and their statistical post-547

processing approaches.548
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Ardilouze C, Batté L, Déqué M (2017) Subseasonal-to-seasonal (S2s) forecasts with564

CNRM-CM: a case study on the July 2015 West-European heat wave. Advances in Sci-565

ence and Research 14:115–121, DOI 10.5194/asr-14-115-2017566

Baggett CF, Nardi KM, Childs SJ, Zito SN, Barnes EA, Maloney ED (2018) Skill-567

ful Subseasonal Forecasts of Weekly Tornado and Hail Activity Using the Madden-568

Julian Oscillation. Journal of Geophysical Research: Atmospheres 123(22), DOI569

10.1029/2018JD029059570

Beck HE, van Dijk AIJM, Levizzani V, Schellekens J, Miralles DG, Martens B, de Roo571

A (2017) MSWEP: 3-hourly 0.25� global gridded precipitation (1979-2015) by merging572

gauge, satellite, and reanalysis data. Hydrology and Earth System Sciences 21(1):589–573

615, DOI 10.5194/hess-21-589-2017574

Bombardi RJ, Pegion KV, Kinter JL, Cash BA, Adams JM (2017) Sub-seasonal Predictabil-575

ity of the Onset and Demise of the Rainy Season over Monsoonal Regions. Frontiers in576

Earth Science 5, DOI 10.3389/feart.2017.00014577
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