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Abstract

The squared Brunt-Väisälä Frequency (BVF) is computed in terms of the moist entropy
potential temperature recently defined in Marquet (2011). Both homogeneously saturated
and non-saturated versions of N2 (the squared BVF) are derived. The method employed
for computing these special homogeneous cases relies on the expression of density written as
a function of pressure, total water content and specific moist entropy only. The associated
conservative variable diagrams are discussed and compared with existing ones. Despite being
obtained without any simplification, the formulations for N2 remain nicely compact and are
clearly linked with the squared BVF expressed in terms of the adiabatic non-saturated and
saturated lapse rates. As in previous similar expressions, the extreme homogeneous solutions
for N2 are of course different, but they are not analytically discontinuous. This allows us to
define a simple bridging expression for a single general shape of N2, depending only on the
basic mean atmospheric quantities and on a transition parameter, to be defined (or param-
eterized) in connection with the type of application sought. This integrated result remains
a linear combination (with complex but purely local weights) of two terms only, namely the
environmental gradient of the moist entropy potential temperature and the environmental
gradient of the total water content. Simplified versions of the various equations are also pro-
posed for the case in which the moist entropy potential temperature is approximated by a
function of both so-called moist-conservative variables of Betts (1973).

1 Introduction.

Several attempts have been published to express the Brunt-Väisälä Frequency (hereafter BVF)
in terms of the two conservative variables represented by the total water specific content (i.e. for
closed systems) and the specific moist entropy (i.e. for closed, reversible and adiabatic systems).
The methods described in Durran and Klemp (1982) and Emanuel (1994) – hereafter referred to
as DK82 and E94, respectively – mainly differ by the choice of the “moist entropy” formulation
to be used as a moist conservative variable.

The entropy potential temperature θs recently defined in Marquet (2011, hereafter referred to
as M11) corresponds to a general formulation for the specific moist entropy, valid for any parcel
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of moist atmosphere with varying specific content of dry air, water vapour and liquid or solid
water.

The aim of this article is therefore to derive non-saturated and saturated versions of the squared
BVF expressed in terms of θs, and to compare them comprehensively with the previous moist
formulations published in DK82 and E94. In this respect, the objective of the article is more
general than that targeted in Geleyn and Marquet (2010), where the objective was to express the
squared BVF in terms of an approximate formulation for θs, namely (θs)1. Comparisons between
the exact and the approximate versions of the specific moist entropy defined in terms of θs and
(θs)1 will be realized with the help of the conservative variable diagrams published in Pauluis
(2008, 2011, hereafter referred to as P08 and P11).

The paper is organized as follows. The mathematical definition of the moist squared BVF (N2
m)

is presented in section 2, with N2
m expressed in terms of the gradients of the two conservative

variables (s, qt) and established in the Appendix B. The moist definition of the state equation is
recalled in the section 3, together with M11’s specific moist entropy defined in terms of θs. The
non-saturated and saturated versions N2

ns and N2
sw are then presented in sections 4 and 5, with

some detailed computations available in the Appendices C and D, respectively.

Several comparisons between N2
ns and N2

sw and the previous versions published in DK82 and
E94 are presented in the section 6. The comparisons are made either with the formulation
expressed in terms of the lapse rate formulation or in terms of the gradients of the two conservative
variables (s, qt), with a special attention paid to the latter one in the section 7. The non-saturated
and saturated approximate versions of the moist squared BVF expressed with (θs)1 are presented
in the section 8.

Some numerical applications are presented in the section 9 with the use of the same FIRE-
I data sets than in M11. Separate analyses are made for in-cloud (saturated) and clear-air
(non-saturated) air. Additional analyses are presented in the Appendix E and F. First, the
non-saturated moist squared BVF is compared with the usual formula expressed in terms of
the vertical gradient of the virtual potential temperature. Second, the possibility of defining an
analytic transition between the non-saturated and the saturated versions of the moist squared
BVF is explored, using a control parameter C varying continuously between 0 and 1. Finally,
conclusions are presented in section 10.

2 The moist squared Brunt-Väisälä Frequency

It is shown in Appendix B that the moist squared BVF can be defined by

N2
m = − g

ρ

(
∂ρ

∂s

∣∣∣∣
p,qt

∂s

∂z
+

∂ρ

∂qt

∣∣∣∣
p,s

∂qt
∂z

)
. (1)

Formulation (1) is different from the classical one used in DK82 or E94, for instance. It is assumed
that the density can be expressed as a function of the two conserved variables s and qt, as well
as of pressure p, leading to ρ = ρ(s, qt, p). The moist squared BVF can then be expressed as a
weighting sum of the two local vertical gradients of s and qt, with weighting factors depending
on appropriate partial derivatives of the density with respect to s and qt.

In order to compute the moist formulation (1), the density must be expressed analytically in
terms of the three independent variables (s, qt, p). One of the problems is that such an explicit
formulation for ρ(s, qt, p) does not exist for the moist air. It is however possible to define ρ in
terms of (s, qt, p) by expressing the entropy and the state equations as ρ(T, qt, p) and s(T, qt, p),
and then by eliminating the temperature. This method is used in the sections 4 and 5 and in
Appendices C and D to compute the non-saturated and saturated version of the squared BVF.
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The saturated case is more difficult to deal with than the non-saturated one, because of the
existing condensed water terms ql or qi. But these terms can be expressed as differences between
qt and the saturated values qsw or qsi, which depend on T , p and qt. It is thus necessary to
express the temperature T in terms of (s, qt, p), at least implicitly.

3 The state and the entropy equations

The state equation of the moist air is written with the use of the dry gas constant Rd replacing
the moist value R = qd Rd + qv Rv, yielding

p = ρ R T = ρ Rd Tv , (2)

where the virtual temperature Tv (Lilly, 1968) is equal to

Tv = T ( 1 + δ qv − ql − qi ) =

(
T

θ

)
θv , (3)

Tv = T

(
1 + η rv
1 + rt

)
= T ( 1 + η qv − qt ) . (4)

From the Appendix A, the constants are equal to δ = Rv/Rd − 1 ≈ 0.608, and η = δ + 1. The
virtual temperature corresponds to Eq.(9) in DK82 and to the “density temperature” denoted
by Tρ in E94. The associated (liquid water) virtual potential temperature is equal to θv defined
in (3).

The specific moist entropy is defined in M11 as

s ≡ sref + cpd ln (θs) , (5)

where the reference entropy sref is equal to

sref = s0d − cpd ln (T0) ≈ 1138.56 J K−1 kg−1 (6)

and where the entropy potential temperature θs can be written as

θs = θ exp

(
− Lvap ql + Lsub qi

cpd T

)
exp (Λr qt)

×
(
T

Tr

)λ qt ( p

pr

)−κ δ qt (rr
rv

)γ qt (1 + η rv)
κ (1+ δ qt)

(1 + η rr) κ δ qt
. (7)

The advantage of the definition (5) for s, with cpd and sref being two numerical constants, is that
θs becomes trully synonymous with or the specific moist entropy, whatever the thermodynamic
properties of the parcel (i.e. T , p, ..., qt, ql, rv, ...) may be.

It can be verified (see M11) that both sref and θs are independent of the reference values
Tr and pr, providing that rr(Tr, pr) is equal to the saturating values ε / [ pr/esw(Tr) − 1 ] or
ε / [ pr/esi(Tr) − 1 ], depending on Tr > T0 or Tr < T0, respectively. All the different terms of
sref and θs depend on Tr and pr in such a way that sref and θs remain unchanged.

The new term Λr appearing in (7) is the main difference from previous studies on moist
entropy and associated moist potential temperatures. It depends on the difference between the
reference partial entropy values of dry air and water vapour, leading to the numerical value
Λr = [(sv)r − (sd)r]/cpd ≈ 5.87 (as computed in M11 from the Third law and for the reference
state, see Appendix A for the reference values of entropies).

The impact of the reference values of partial entropies on the definition of the moist air entropy
has been addressed independently in Pauluis et al. (2010, hereafter referred to as PCK10), where
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an equivalent of Λr has been studied in the Appendices, in the form of an unknown and arbitrary
constant “a”.

In constrast, the moist entropy is computed in E94 and P11 “per unit mass of dry air”, with
the reference values (sd)r and (sv)r suppressed from the formulae of the specific values sd and
sv. This method prevents the possibility of arriving at a relevant definition for the specific moist
entropy (“per unit mass of moist air”), with varying values for qd or qt = 1 − qd to be put in
factor of (sd)r and (sv)r, respectively.

The three terms in the right-hand side of the first line of (7) correspond to the variables θl and
qt defined in Betts (1973, hereafter referred to as B73), with qt multiplied by Λr. The third term
in the second line of (7) might be irrelevant for the dry-air limit where qt = qv and rv = qv/(1−qv)
tends to 0 when qv tends to 0. However, this term varies like qv ln(qv) which has the limit 0 when
qv tends to 0.

4 The squared BVF for the unsaturated moist air.

The unsaturated moist air is defined by ql = qi = 0 and qt = qv. From (5) and since cpd is a
constant, the gradient of the specific moist entropy is exactly equal to

∂s

∂z
= cpd

∂ ln(θs)

∂z
. (8)

The computations of the two partial derivatives of the density involved in the formulation (1)
for N2

m are described in the Appendix C. They are given by (C.6) and (C.13), leading to

N2
ns = Γns

∂s

∂z
+ g

∂ ln(qd)

∂z
+ Γns

[
(1 + rv)

cp Rv
R

− cpd (Λr + Λv)

]
∂qv
∂z

. (9)

The term Λv and the unsaturated adiabatic lapse rate Γns are equal to

Λv = λ ln

(
T

Tr

)
− κ δ ln

(
p

pr

)
− γ ln

(
rv
rr

)
+ κ δ ln

(
1 + η rv
1 + η rr

)
, (10)

Γns =
g

cp
= − ∂T

∂z

∣∣∣∣
s,qv

=
p g

R T

∂T

∂p

∣∣∣∣
s,qv

. (11)

The derivative of T with respect to pressure is computed in (11) at constant specific moist entropy
and water content. The resulting value Γns, with cp attaining its moist value depending on qv,
has been obtained after long computations involving all the terms entering in the specific moist
entropy formulation defined by (5)-(7), in a way analogous to the computations described in some
details in the Appendix C.

The term in (9) involving the gradient of qd can be written as any of the alternative ways

− g

1− qv
∂qv
∂z

= g
∂ ln(1− qv)

∂z
= g

∂ ln(qd)

∂z
(12)

= − g

1 + rv

∂rv
∂z

. (13)

The formulation involving qd corresponds to the original one derived in Lalas and Einaudi (1974,
hereafter referred to as LE74) for the saturated case. It is retained for the present non-saturated
version in order to be consistent with the next section.

It is important to notice that only the hydrostatic approximation has been made to derive (9),
according to the demonstration given in the Appendix B to obtain the squared BVF formulation
(1), where the specific moist entropy is defined by the more general and exact formula (5), with
θs given by almost all the terms in (7), except that ql = qi = 0 and qt = qv.
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5 The squared BVF for the saturated moist air.

The computations of the two partial derivatives of the density involved in the saturated formula-
tion (1) for N2

m are described in the Appendix D. They are given by (D.19) and (D.23) and the
liquid-water saturated counterpart of (9) writes

N2
sw = Γsw

∂s

∂z
+ g

∂ ln(qd)

∂z
+ Γsw

[
(1 + rsw)

Lvap
T
− cpd (Λr + Λsw)

]
∂qt
∂z

. (14)

The terms Λsw and Γsw are equal to

Λsw = λ ln

(
T

Tr

)
− κ δ ln

(
p

pr

)
− γ ln

(
rsw
rr

)
+ κ δ ln

(
1 + η rsw
1 + η rr

)
, (15)

Γsw =
g

cp

D1w

D2w
=

p g

R T

∂T

∂p

∣∣∣∣
s,qt

, (16)

where

D1w = 1 + (1 + η rsw)
Lvap qsw
Rd Tv

, (17)

D2w = 1 + (1 + η rsw)
L2
vap qsw

cp Rv T 2
. (18)

The liquid-water saturated adiabatic lapse rate is given by (16), with the derivative of T with
respect to pressure computed at constant specific moist entropy and water content. The resulting
value Γsw has been obtained after long computations involving the specific moist entropy defined
by (5) and (7), in a way analogous to the one described in some details in Appendix D. The
specific heat cp is the moist version of it, depending on qd, qv and ql, as expressed by (D.6) or in
Appendix A.

The term in (14) involving the gradient of qd can be written in any of the alternative ways

− g

1− qt
∂qt
∂z

= g
∂ ln(1− qt)

∂z
= g

∂ ln(qd)

∂z
(19)

= − g

1 + rt

∂rt
∂z

. (20)

The last formulation (20) is used in DK82 and E94. The one involving qd is the original one derived
in Eq.(43) of LE74, where the superscript “1” represents the dry air density. The corresponding
term was written in the following way, due to the property qd = ρd/ρ.

g
∂ ln(qd)

∂z
= − g

[
∂ ln(ρ)

∂z
− ∂ ln(ρd)

∂z

]
. (21)

As for the unsaturated case, only the hydrostatic approximation has been made to derive (14).
In particular, the specific moist entropy is defined by the more general and exact formula (5) and
θs by (7), with most of the terms varying with s, qt or p.

The ice-water saturated counterparts of (14) to (18) are obtained by replacing Lvap by Lsub,
rsw by rsi and qsw by qsi, including in the moist definition of cp.

In comparison with the non-saturated formulation (9) and the associated weighting factor (10),
the saturated formulation (14) for N2 is modified so that the term Λv must be replaced by its
saturated equivalent Λsw given by (15), with cp Rv/R replaced by Lvap/T and with the term
(D1w/D2w) appearing in the adiabatic lapse rate (16) equal to 1 in the unsaturated adiabatic
lapse rate formulation (11).
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6 Full comparisons with DK82 and E94.

In order to better compare the present results with those published in DK82 and E94, the
unsaturated and saturated squared BVF formulations given by (9) and (14) can be rewritten
in terms of the gradient of temperature, by computing the vertical derivative of all the terms
entering the formulation for ln(θs), with θs given by (7). It appears that most of the terms cancel
out, leading to

N2
ns =

g

T

(
∂T

∂z
+ Γns

)
+ g δ

T

Tv

∂qv
∂z

, (22)

N2
sw =

g D1w

T

(
∂T

∂z
+ Γsw

)
− g

1 + rt

∂rt
∂z

. (23)

The saturated squared BVF given by Eq.(13) in DK82 can be rewritten, with the notation of
the Appendix A, as

N2
DK =

g D1w

T

(
∂T

∂z
+ ΓDK

)
− g

1 + rt

∂rt
∂z

, (24)

with the same formulation for D1w as in (17), due to the equality

1 + (1 + η rsw)
Lvap qsw
Rd Tv

= 1 +
Lvap rsw
Rd T

. (25)

It is worthwhile to notice that all the mixing ratios were denoted by the letter “q” in DK82, and
that the use of the more standard letter “r” is made in the present article.

The difference between (23) and (24) concerns the liquid-water saturated adiabatic lapse rate
(16), defined by Eq.(19) in DK82, leading to

ΓDK =
g

cpd
(1 + rt)

D1w

DDK
. (26)

The lapse rate computed in DK82 contains an additional term (1 + rt) and g/cp is replaced by
g/cpd. Moreover, the term at the denominator of (26) may be written as

DDK = 1 + (1 + η rsw)
L2
vap rsw

cpd Rv T 2
+

cpv rsw + cl rl
cpd

. (27)

It is different from D2w given by (18) in that cp is replaced by cpd, qsw by rsw, with the additional
last term depending on rsw and rl. All these differences make the formulations (23) and (24)
more unlike than what could appear at a first sight.

The absence of the last term of (27) in the θs formulation for D2w given by (18), and the
direct multiplication of the unsaturated adiabatic gradient by D1w/D2w in (16), indicate that
the use of the θs formulation eventually leads to a more compact and more logical definition of
the saturated adiabatic lapse rates.

The liquid-water saturated adiabatic lapse rate is defined in E94 by

ΓEM =
g

c∗p
(1 + rt)

D1w

DEM
. (28)

The E94 formulation contains the same additional term (1 + rt) than in the DK82 formulation
(26), but with cp replaced by c∗p = cpd + cpv rsw instead of cpd. The term at the denominator may
be written as

DEM = 1 + (1 + η rsw)
L2
vap rsw

c∗p Rv T
2

+
cl rl
c∗p

. (29)
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In comparison with the θs formulation D2w given by (18), the E94’s formulation DEM contains
the additional third term, with qsw replaced by rsw in the second term, and cp replaced by c∗p in
the second and third terms.

The equivalent of (23) or (24) is not mentioned in E94. However Emanuel, like Durran and
Klemp, tried to express the moist and saturated value of the squared BVF in terms of conservative
variables, with the same quantity qt representing the conservation of the dry air or the total water
species, but with definitions of the moist entropy that are different from the one retained in the
present paper, depending on θs given by (7).

The moist entropy-like function appearing in DK82 was expressed in terms of the quantity
cpd ln(θq), with θq defined by

θq = θE

(
T

T0

)cl rt/cpd
, (30)

θE = θ exp

(
Lvap rsw
cpd T

)
. (31)

It is worthwhile noting that, from (30) and provided the correction term depending on (T/T0) is
a small one (valid in the lower troposphere where T ≈ T0 and above where rt tends to 0), θq is
almost equivalent to the equivalent potential temperature θE given by (31).

The corresponding saturated value of the squared BVF is given by Eq.(21) in DK82. It writes

N2
DK =

ΓDK
1 + rt

cpd
∂ ln(θq)

∂z
− g

1 + rt

∂rt
∂z

. (32)

The lapse rate ΓDK is given by (26) and (27).

The moist entropy-like function appearing in E94 will be denoted by s∗ in the present paper.
It is different from the θs specific entropy formulations (C.2) and (D.4) in that Emanuel, like
P11, has considered an entropy “per unit mass of dry air” and not “per unit mass of moist air”.
As a consequence, the reference values are not derived from the Third Law in E94 and P11, and
the corresponding term Λr does not appear as such.

More precisely, the non-saturated and saturated versions of the moist entropy s∗ = s/qd =
s/(1− qt) = (1 + rt) s are defined in E94 by

s∗ = (cpd + cpv rt) ln(T ) − Rd ln(pd) +
Lvap rv
T

− rv Rv ln(e/esw) . (33)

The liquid-water saturated version of (33) is obtained by replacing rv by rsw and with a relative
humidity of 100% leading to e/esw = 1, and therefore to a cancellation of the last term. It is
possible to compare the saturated version s∗sw with (5)-(7) by using the properties pd = p/(1+ηrv)
and rsw = rt − rl, leading to

s∗sw ≡ cpd ln(θ∗/pκ0) (34)

θ∗ = θ exp

(
− Lvap
cpd T

rl

)
exp

(
Lvap
cpd T

rt

)
T (1+λ) rt (1 + η rsw) κ . (35)

The general features of θs and θ∗ are similar. The main difference between (7) and (35) is that
the term Λr ≈ 5.87 in θs is replaced by Lvap/(cpd T ) ≈ 9 in the second exponential of (35).
Moreover, the specific contents are replaced by the mixing ratios and the second and third lines
of (7) are different from the last two terms in (35).

The saturated squared BVF corresponding to s∗sw is derived in E94. It is equal to

N2
EM =

ΓEM
1 + rt

∂s∗

∂z
− g

1 + rt

∂rt
∂z
− ΓEM

1 + rt
[ cl ln(T ) ]

∂rt
∂z

, (36)
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with ΓEM given by (28) and (29).

The comparisons between (32) or (36) and the present formulation (14) show the following:

- the last terms −(1 + rt)
−1∂rt/∂z in the DK82 and E94 formulations and the term ∂ ln(qd)/∂z

in (14) are the same, due to the properties (19)-(20);
- the moist lapse rates ΓDK and ΓEM are different from the one (16) obtained with θs, as

explained above;
- both ΓDK and ΓEM are divided by (1 + rt) in (32) and (36), removing the impact on N2

DK and
N2
EM of the same extra term (1 + rt) included in these adiabatic lapse rates;

- the moist entropy functions are not the same, with s and cpd ln(θs) different from s∗ or
cpd ln(θq), implying vertical gradients different of those in the E94 and DK82 formulations
(32) and (36);

- the last bracketered term of (14), which represents a new term consistent with the new formu-
lation for the specific moist entropy and θs, does not appear in the DK82 formula (32), and is
only partially present in the E94 formula (36).

The formulation (36) has been expressed in E94 with the hope of managing vertical gradients
of conservative variables only. It has been concluded that “cloudy air is stable if moist entropy
increases upward and total water decreases upward”. This is true only if the moist entropy is
accurately represented by s∗ in E94. The same property holds for the DK82 formulation (32), as
far as the moist entropy is accurately represented by cpd ln(θq).

A similar stability analysis may be applied to the present formulation (14), with the same stable
feature valid forN2

sw on the first line of (14) if θs and qd increase upward, but with the presence of a
non-negligible contribution in the second line, of the opposite sign to ∂ ln(qd)/∂z > 0 and larger
in absolute value for classical atmospheric conditions. The novel aspects of this contribution,
without any equivalent in the DK82’s and E94’s formulations (32) and (36), will be studied in
detail in the next section.

The second line of (14) almost disappears in E94 and does not exist in DK82. It is possible
to explain this feature by comparing the potential temperature θs given by (7) with the E94
formulation θ∗ given by (35). Clearly, the term Λr in θs is replaced by Lvap/(cpd T ) ≈ 9 in θ∗.
This modification would transform the second line in (14) into a term depending on rswLvap / T−
cpd Λsw. It is a residual quantity which is much smaller than Lvap / T − cpd Λr and this explains
why the impact of the new term Λr depending on the absolute values of the reference partial
entropies is important in the second line of (14) for N2

sw.

7 Impact of gradients of qt and of moist entropy formulations.

The remarks and comparisons mentioned in the previous section indicate that the DK82 and E94
formulations possess two potential conceptual drawbacks with respect to the present proposal.

First, the DK82 and E94 moist lapse rates (26) and (28) should not contain the term (1 + rt).
This term is a consequence of the moist entropy being defined “per unit mass of dry air” in DK82
and E94, corresponding to the transformation of any specific value ψ into ψ∗ = (1 + rt) ψ =
ψ/(1− qt) = ψ/qd. It is important to notice that, even if the moist lapse rates are multiplied by
(1+rt), this has no impact on N2

DK and N2
EM , since the lapse rates are divided by the same factor

in (32) and (36). The adiabatic lapse rates of a parcel in a moist atmosphere should however
get a unique definition, and the specific moist entropy based on θs and (7) appears to be a more
general way to obtain it, leading to the simple shape of Γsw given by (16)-(18).

Second, it seems that one of the constraints for determining or choosing the moist entropy
formulations s∗/qd or cpd ln(θq) may be to express the squared BVF as a sum of two terms only,
with a first term depending only on the gradient of moist entropy formulations plus another
term depending only on the gradient of qt, but being exactly equal to the prescribed value

8



− g/(1 + rt) (∂rt/∂z) given by (20). It is indeed the result (32) obtained in DK82 and almost
achieved in E94, where a partial second line still exists in (36).

Figure 1: The same conservative variable diagram as in PS10 with total specific water content plotted
against the moist entropies. The temperature T (s, qt, p1) is plotted for p1 = 900 hPa. The diagram is
separated by the increasing saturation curves located in the center of it, with non-saturated and satu-
rated regions located below and above the curves, respectively. The dashed lines represent equal values
of T (s∗, qt, p1) computed with the PS10 moist entropy s∗(θ∗) given by (33)-(35), depending on the non-
saturated or saturated conditions, respectively. The solid lines correspond to equal values of T (s, qt, p1)
computed with the specific moist entropy formulations s(θs) given by (C.2) or (D.4), depending on the
non-saturated or saturated conditions, respectively. The θs entropy formulations is plotted as s − s0d on
the x-axis, with s0d = 6775 J K−1 kg−1. The lines of equal temperature are labelled every 10 K. The black
circles represent the changes in s or s∗ due to the moistening of an initially dry-air parcel of atmosphere,
with the same increase of qt of 5 g kg−1 and undergoing isothermal processes following lines of equal value
of either T (s, qt, p1) or T (s∗, qt, p1). The black stars represent the changes in moist entropies due to the
moistening of an initially saturated parcel by the same amount of 5 g kg−1 and undergoing the same kind
of isothermal processes.

The specific moist entropy has a unique formulation since it is a thermodynamic state function.
In this respect, different moist entropy formulations must lead to different sets of curves in the
conservative variable diagram plotted in Figure 1. The solid lines and the dashed lines coincide
for the dry air limit at the bottom of the diagram, due to the global shift by the amount of the
dry air standard value s0d for s.

The differences between lines of equal value of T become more and more important as qt in-
creases. The saturation curves are also different, depending of the use of s(θs) versus s∗(θ∗)
formulations. The dashed lines are almost equal values of s∗ in the saturated region, whereas the
specific moist entropy s decreases as qt increases in the saturated region. These differences demon-
strate that the way in which the moist entropy is defined may generate important differences in
the physical interpretation.

In fact, it is unlikely that some arbitrariness may exist in the possibility to change the formu-
lation of the specific moist entropy. It is the difference in the formulations of the moist entropy
that generates the large impacts on the definition of the moist squared BVF and concerning
the different ways to write the terms depending on the gradient of qt. Moreover, even if the
squared BVF values eventually remain close to each other, different values for the changes in
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moist entropy correspond to different physical meanings.

In particular, for isothermal and isobaric transformations where qt increases by the same given
amount of 5 g kg−1, the black circles and stars represent the changes in moist entropies associated
with isothermal and isobaric transformations. The changes in moist entropies are clearly different
in PA10’s version from the present one. In saturated conditions, the change of entropy almost
cancels out with s∗(θ∗), whereas the specific moist entropy exhibits a large decrease with s(θs).
It may be considered that the almost isentropic feature appearing for the isotherms above the
saturation curve with the formulations of PA10 and E94 is a very special case that is not explained
by the theory, nor supported by observations.

The reference values are determined in s(θs) from the Third Law and Λr ≈ 6 in (7) is replaced
by Lvap/(cpd T ) ≈ 9 in (35). It is worthwhile noting that when Λr is arbitrarily set to 9 in the
θs definition (7), the solid lines are almost superimposed on the dashed lines in Figure 1 (result
not shown). This indicates that the third Law used to compute the special value of Λr is a key
part for the definition of s(θs), and that the logic of PA10 and E94 is of a different kind.

It is therefore important to justify the present formulation, with the above prescribed term
separated from the other terms in the second line of (9) and (14) even if those also depend on the
gradient of qt. In fact, this prescribed term was introduced first in LE74 as a correction to older
formulations, in the form g ∂ ln(qd)/∂z given by (21). This correction term also appears in the
DK82’s moist version in the equivalent form (20), where it was still considered as an additional
term.

By analogy with the ideas published in Pauluis and Held (2002), this correction term may be
interpreted as a modification to the vertical stability, represented here by N2

sw, and corresponding
to a conversion between the kinetic and the potential energy due to the work required to ensure
the vertical transport of water species.

Hence, the correction term given by (20) logically appears in the DK82 and E94 conservative
variable formulations (32) and (36) and also in the first lines of the present formulations (9) and
(14) for N2

ns and N2
sw, respectively, but given by the equivalent form (21). The correction term

must not be included in the specific moist entropy term, nor be regrouped with the second line
of (9) and (14).

The computation of the moist squared BVFs in terms of the vertical gradient of θv are derived
in the Appendix E, showing that the moist squared BVF based on the specific moist entropy
s(θs) is not exactly proportional to ∂θv/∂z for a moist but non-saturated atmosphere.

An interesting feature suggested by the second lines of (9) and (14), in which the moist squared
BVF is based on the θs approach, is that a continuous transition may exist between the two
unsaturated and saturated regimes. An example of this kind of transition is described in the
Appendix F.

Summing up, the important new result derived in the present paper is that the specific moist
entropy (and θs) really verify the conservative property associated with the second principle. The
consequence is that second lines must exist in both the non-saturated version (9) and the saturated
one (14). The physical meaning for these extra terms can be found in the results obtained in M11,
where the vertical profile for the specific moist entropy s is observed to be almost a constant for
marine stratocumulus, in spite of existing vertical trends for the B73 variables qt and θl. These
results are true for both clear-air (unsaturated) and in-cloud (saturated) moist regions.

This means that, at least for marine stratocumulus, the sign of N2
ns and N2

sw are not controlled
by the vertical gradient of specific moist entropy, but almost entirely by the vertical gradient of
qt. More precisely, the vertical profiles of qt impact on N2

ns and N2
sw not only via the “water

lifting” contributions located in the first lines of (9) and (14), but also via the terms located in
the second lines, where “expansion work” and “latent heat” effects are accompanied by the new
impact corresponding to the pure entropy terms Λr, Λv and Λsw.
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Figure 2: Comparison of θs (in a central position) with other potential temperature formulations for the
grid-cell average of the RF03B profiles of the FIRE-I datasets. The two profiles on the left are θl and θv
given by (40) and (3). The four last profiles on the right correspond to four formulations of θE (B73, E94,
Bolton (1980) and a formulation used in ARPEGE). The vertical profile of the approximate version (39)
is located close to the θs curve and is labelled by (θs)1.

The second lines of (9) and (14) are of opposite sign. It is possible to explain this result by
comparing [

Rv
R
≈ 1.6

]
< [ Λr ≈ 5.9 ] <

[
Lvap
cpd T

≈ 9

]
. (37)

The result is that Λr is almost in a two-third / one-third position between Rv/R and Lvap/(cpd T )
in terms of the control parameter C (see Appendix F), leading to positive values for Lvap/T−cpdΛr
in the second line of N2

sw and to negative values for the corresponding term in the second line of
N2
ns. This result may be put into context with the property illustrated in Figure 2, where θs is

almost in a two-third / one-third position between θl and θE (see also M11).

8 Approximate versions for the moist squared BVF.

It is shown in M11 that the specific moist entropy defined by (5) can be accurately approximated
by

s ≈ s1 = sref + cpd ln [(θs)1] . (38)
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The reference entropy is still given by (6), but the specific moist entropy potential temperature
θs is approximated by (θs)1 given by the first line in the R.H.S. of (7), leading to a liquid water
version, which may be written as

(θs)1 = θl exp (Λr qt) , (39)

where

θl = θ exp

(
− Lvap ql

cpd T

)
(40)

is the B73 liquid-water potential temperature.

The specific moist entropy s[(θs)] and its approximate version s1[(θs)1] are compared in Figure 2
to other usual moist potential temperatures. Clearly, the replacement of θs by (θs)1 is a good
approximation, with errors (θs)1 − θs much smaller than the observed large differences between
θs and θl, θv or θE . Moreover, the errors are almost constant along the vertical and they should
not largely impact on the computations of the moist squared BVF.

The computations of the moist squared BVF and of the moist adiabatic lapse rates can be
realized through the replacement of s by s1. The corresponding approximate non-saturated and
saturated versions of the squared BVF may be written as

N2
1/ns =

g

cpd

∂s1
∂z

+ g
∂ ln(qd)

∂z
+ g

[
(1 + rv)

Rv
R
− Λr

]
∂qv
∂z

, (41)

and

N2
1/sw =

g

cpd

D1w

D2wl

∂s1
∂z

+ g
∂ ln(qd)

∂z
+ g

D1w

D2wl

[
(1 + rsw)

Lvap
cpd T

− Λr

]
∂qt
∂z

. (42)

The term D1w is still given by (17) but D2w is replaced by

D2wl = 1 + (1 + η rsw)
L2
vap qsw

cpd Rv T 2
+

L0
v ql

cpd T
. (43)

A new term depending on ql appears in D2wl, with the specific heat cp in (18) replaced by cpd in
(43) and L0

v given by (D.7).

The last term involving L0
v and ql is somehow similar to the last terms in the DK82 and E94

formulations (27) and (29). These terms are of the order of 1.8 rsw in DDK , 4.2 rl in DEM and
11ql in D2wl. It means that when the moist entropy is based on formulations different from s(θs),
the compact feature obtained in (18) for D2w is modified. It is indeed slightly different from D2wl

and the approximation s1[(θs)1] of this section, or from DEM and E94’s formulation s∗(θ∗). The
modifications of DDK are more important with the DK82’s version cpd ln(θq), since typical values
for rsw are much larger than those for rl ≈ ql.

The non-saturated and saturated lapse rates may be written as

Γ1/ns =
g

cpd

T

Tv
, (44)

and

Γ1/sw =
g

cpd

T

Tv

D3w

D2wl
, (45)

where

D3w = 1 + (1 + η rsw)
Lvap qsw
Rd T

. (46)
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Figure 3: The same conservative variable diagram as in Figure (1), but with the exact moist entropy
formulation s(θs) compared to the approximate one s1[(θs)1] and with extended ranges for the variations
of the moist entropies and of qt. The solid lines correspond to constant values of T (s, qt, p1) computed with
s(θs) given by (C.2) and (D.4). The dashed lines correspond to constant values of T (s1, qt, p1) computed
with the approximate version s1[(θs)1] coming from (38) and (39). The entropies are plotted as s− s0d and
s1 − s0d on the x-axis, with s0d = 6775 J K−1 kg−1. Lines of equal temperature are labelled every 10 K.

The difference between D1w and D3w is that the virtual temperature Tv in (17) is replaced by
the actual one T in (46).

Comparison of the conservative variable diagrams plotted in Figures 1 and 3 shows that the
impacts of the difference between the specific moist entropy formulation s[(θs)] and the approxi-
mate version s1[(θs)1] are much smaller than the impacts of the use of the Puluis and Schumacher
(2010) moist entropy formulation s∗(θ∗). This allows the possible use of s1[(θs)1] as an accurate
approximation of s[(θs)], whatever the non-saturated or (over-) saturated conditions may be.

As an example of possible application, it is possible readily to convert the “bridging relation-
ships” (F.1) to (F.4) to the case of θs ≈ (θs)1. If cpd replaces cp in the definition of F (C), and
if the last term of (43) appears in the lower case expression of M(C), the equivalent of (F.4) is
then simply expressed by:

N2
1 (C) = g M(C)

(
∂ ln(θs)1
∂z

)
E

+ g

(
∂ ln(qd)

∂z

)
E

+ g M(C)

[
(1 + rv)

Rv
R

F (C)− Λr

]
E

(
∂qt
∂z

)
E

.

(47)

This more compact formulation allows us better to understand the purpose and limitations of
the introduction of C as control (or transition) parameter for the bridging step synthetically
described by (47).

Potential applications of a formula like (47) may correspond (pending other suggestions left to
the interested readers) to

- the computation of a N2-linked physical quantity like the conversion term of turbulent kinetic
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energy into other forms of energy;
- the calculation of a Richardson number (or any 2D or 3D related quantity);
- some more complex computations, like those of the reduced complexity model for interac-

tions between moist convection and gravity waves described in Ruprecht et al. (2010) and
Ruprecht and Klein (2011). There, C would represent de facto the area fraction of cloudy air
in horizontal slices.

In all cases, the question of the definition (or the parametrization) of the control parameter
C becomes a central one and this issue is likely to take a differing shape from case to case. If
seeking full complexity, C should not be confused with a proportion of saturated air within the
considered air parcel. There are two reasons for this. First, as explained in Appendix F, there is
no reason to consider N2(C) or N2

1 (C) as a C-weighted linear interpolation between the extreme
cases of fully unsaturated and fully saturated conditions. Second, in most conditions, there would
exist (partly) organized motions differentiating the mean dynamical behaviour of the clear-air
and cloudy patches of the considered air parcel, respectively. Nonetheless, we may postulate a
monotonic dependency of C on the above-mentioned proportion.

Despite the weakness linked to the generally heuristic character of the definition of C, two
additional remarks support the potential use of (F.4) or (47).

First, in the already mentioned case of FIRE-I marine Stratocumulus clouds, there is hardly
any gradient of specific moist entropy between clear-air and cloudy patches in Figure 4 (a), and
most of the so-called subgrid transport of qt is ensured by turbulent motions and not by partly
organized compensating motions between these patches. Hence, viewing here C as a kind of
subgrid cloud cover becomes rather legitimate, if one indeed attributes the nonlinear part of the
N2(C) or N2

1 (C) behaviour to the existence of the above-mentioned (small) partly organized
transport.

Second, the fact that one single parameter is sufficient to obtain a monotonic, general and con-
sistent transition between unsaturated and saturated situations is a welcome step for applications
seeking a robust and simple behaviour.

In summary, the proposed transition formulas need to be used with a lot of care (especially for
the estimation of C): there is at least one case where they should be directly appropriate, while
in other cases they may be useful because of their simplicity (one control parameter alone) and
of their monotonic character, for lack of other alternatives in front of practical problems.

9 Some numerical applications.

A numerical application is presented in this section by using the same RF03B FIRE-I observations
as in M11, except with the additional constraint that qv ≡ qsw if ql > 0.1 g/kg and that ql ≡ 0 if
ql < 0.1 g/kg. The profiles have been slightly filtered vertically, in order to give smoother profiles
and less noisy vertical gradients. The same average profiles are used for all the formulations of
N2.

The vertical profiles of the basic variables are depicted in the Figs.(4) (a) and (b), where the
θq curve given by (30) appears to be similar to the saturated θE one, with θs ≈ (θs)1 ≈ 304.5 K
in a two-third position between θl ≈ θv ≈ 288 K and θE ≈ θq ≈ 312 K, as already indicated in
the Fig.(11-b) of M11.

The clear-air profiles of the Betts’ variable θl and qt are clearly different from the associated
in-cloud profiles in the upper-PBL entrainment region. The same feature is valid for the θv and
θq curves (the two profiles used in DK82). In contrast, the clear-air and in-cloud vertical profiles
of θs are almost superimposed, illustrating the full mixing in specific moist entropy within the
stratocumulus, as already mentioned in M11.
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(a) (b) (c)

(d) (e) (f)

Figure 4: A study of the FIRE-I (RF03B) Stratocumulus (see M11). The vertical profiles of θl, θv,
(θs)1, θs, θE and θq are depicted in (a), from left to right. The vertical profiles of qt and 10 × ql are
depicted in (b). On both (a) and (b) the solid (dashed) lines represent in-cloud (clear-air) and saturated
(unsaturated) conditions. Only in-cloud values of θq are plotted, since the formulation (30) is not valid
for clear-air (unsaturated) conditions. The vertical profile of the clear-air approximate formulation (θs)1
is located close to the clear-air profile for θs, with an almost constant bias of about −0.4 to −0.6 K (see
M11). Units are in K for the potential temperatures and in g/kg for the water contents. The budgets of the
moist squared BVF equations are depicted in (c)-(f). The total budgets (heavy solid lines) are split into
the terms depending either on the lapse-rate or gradients of potential temperatures (solid lines) or on the
gradients of the water contents qv or qt (dashed lines). The usual Lapse-rate budget (22) of the clear-air
(unsaturated) squared BVF formulation is depicted in the panel (c). The standard formulation (E.1) for
N2

v expressed in terms of the gradient of θv is depicted bu the long-dashed line. The new clear-air budget
(9) using the (unsaturated) θs specific moist entropy formulation is depicted in the panel (d). The DK82
squared BVF formulation (32) valid for in-cloud (saturated) conditions and using θq is depicted in (e).
The new in-cloud (saturated) θs specific moist entropy formulation (14) is depicted in (f). All the squared
BVF values are multiplied by a factor of 104, with units in s−2.

Moreover, the θq and θE profiles are almost similar but far from the θv curve, with almost
opposite vertical gradients. This must correspond to a less continuous feature between the clear-
air and in-cloud formulations of N2 with the standard DK82 approach, where the non-saturated
budget of N2 is based on θv and the saturated one is expressed in terms of θq ≈ θE .

Let us comment the Figures 4 (c)-(f). For the standard clear-air formulation (22) which uses
the lapse-rate approach, the budget of the squared BVF is dominated in (c) by the thermal
component, with a much smaller water content component. For the new formulation in (d),
which uses the conservative variables (θs, qt) approach, the (total) value of N2 is almost the same
as for DK82, but the clear-air budgets is made of large and compensating thermal versus water
content components (within the whole moist PBL and the dry air above as well).

A more detailed analysis shows that some numerical differences exist between 650 and 800 m
(thin lines have been added at 700 and 800 m), where the total N2 budgets (thick solid lines)
are not the same in (c) and in (d). It appears that the vertical profile of T (not shown) exhibits
more noisy and uneven vertical shape than the vertical profiles of qv, leading to gradients of θs
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which are easier to determine than the lapse rates. Since the standard formulation (E.1) for N2
v

– long-dashed line in (c) – is very close to the (θs, qt) approach – thick line in (d) –, it may be
concluded that the differences are due to less accurate evaluations of the stability feature using
the lapse rate method than with the other methods based on virtual or specific moist entropy
potential temperatures.

The in-cloud budgets presented in (e) and (f) show that the total values of saturated N2

are almost the same for the DK82 formulation with ln(θq) as for the new formulations with
ln(θs). However, for the new formulation in (f), the water content component is of opposite
sign and is more “neutral” than in (e), i.e. it is closer to 0 at each level. These differences are
the consequences of the second line in (14) which does not exists in (32), leading to a different
partitioning of the budgets of N2.

10 Conclusions.

Both non-saturated and saturated versions of the moist squared BVF (N2) have been computed
in terms of the vertical gradients of the moist natural conservative variables, namely the specific
content of dry air (or total water) and the specific moist entropy. The latter has been defined in
terms of the specific entropy potential temperature (7) for θs introduced in M11, differently from
the moist entropies and potential temperatures already defined in DK82, E94, P08 or P11.

Comparisons with the previous results published in DK82 and E94 show that the adiabatic
lapse rates are different. The conservative variable diagrams published in P11 are also modified if
the present θs formulation for the specific moist entropy is used, with possible different physical
properties. A new small counter-gradient term appears when the new non-saturated version of
N2 is written in terms of the vertical gradient of the virtual potential temperature.

Numerical applications made with the FIRE-I data sets indicate that there is little difference
for the (total) values of N2. Larger impacts are observed if the budget of N2 is partitioned into
a sum of separated terms depending on gradients of s and qd (first lines) and qt (second lines),
with weighting factors really different from the ones obtained with DK82 or E94 moist entropies.

It is possible to replace θs by the approximate version (θs)1 and to derive a corresponding
approximate formulations for N2. A continuous transition is suggested between the new non-
saturated and saturated versions of N2, leading to possible definition of a control parameter C
valid for both (θs)1 and θs formulations.

It is a kind of paradox that the complexity of the specific moist entropy defined with the full
formulation of θs should lead to rather simple and compact formulations for N2

ns and N2
sw. In

particular, the terms DDK and DEM involved in the DK82’s and E94’s computations of the
moist, saturated, adiabatic lapse rate and the associated squared BVFs are more complicated
than with the formulations Γsw and N2

sw based on θs. Additional small terms depending on the
liquid-water content appear in DDK and DEM , and they disappear in Dsw.

An explanation for this paradox could be found in the complex moist basic formulas like (D.6)
and (D.7) which define cp or Lvap(T ), among others. They both depend on the thermodynamic
properties of water species in such a way that the full specific entropy formulation (7) for θs
seems to be required in order to arrive at a cancellation of all small terms. If approximations are
made in the definitions of the moist entropies, like the hypothesis of zero dry-air and liquid-water
reference entropies in E94, or in the definitions of R, cp or Lvap, the cancellation of the small
terms is incomplete. It is true, for instance, with θq and θ? used as starting points to compute
N2.

It may be worthwhile to note that the approximation of θs by (θs)1 generates different but
still simple and compact versions of N2

1/ns and N2
1/sw. As for the DK82’s and E94’s versions,

the corresponding term D2wl contains an additional small term depending on ql, but the same
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continuous transition with the same parameter C is obtained between N2
1/ns and N2

1/sw as between

N2
ns and N2

sw. In this respect, it may indicate that the approximation of θs by (θs)1 is of smaller
impact than the use of θq or θ?.
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Appendix A. List of symbols and acronyms.

BVF Brunt-Väisälä Frequency
FIRE the First ISCCP Regional Experiment
ISCCP International Satellite Cloud Climatology Project
PBL Planetary Boundary Layer
(∂/∂z)par Gradients computed for the parcel
(∂/∂z)env Gradients computed for the environment
C, C0 control parameters in the Appendix F
cpd specific heat for dry air (1004.7 J K−1 kg−1)
cpv spec. heat for water vapour (1846.1 J K−1 kg−1)
cl spec. heat for liquid water (4218 J K−1 kg−1)
ci spec. heat for ice (2106 J K−1 kg−1)
cp specific heat at constant pressure for moist air,

= qd cpd + qv cpv + ql cl = qd ( cpd + rv cpv + rl cl)
c∗p = cpd + rsw cpv (E94’s formulation)

D1w a shortcut notation, like D2w, DDK , DEM , ...
δ = Rv/Rd − 1 ≈ 0.608
η = 1 + δ = Rv/Rd ≈ 1.608
ε = 1/η = Rd/Rv ≈ 0.622
κ = Rd/cpd ≈ 0.2857
γ = η κ = Rv/cpd ≈ 0.46
λ = cpv/cpd − 1 ≈ 0.8375
e the water-vapour partial pressure
esw(T ) partial saturating pressure over liquid water
er the water vapour reference partial pressure: er = ews(T0) ≈ 6.11 hPa
F (C) a function of C, like M(C)
g Gravity’s constant (9.80665 m s−2)
Γns the lapse rate (−∂T/∂z / unsaturated)
Γsw the liquid-water saturated version of Γns
Λr = [(sv)r − (sd)r]/cpd ≈ 5.87
Λv an additional term to Λr (Λsw as well)
Lvap(T ) = hv − hl: latent heat of vaporisation
Lvap(T0) = 2.501 106 J kg−1

Lsub(T ) = hv − hi: latent heat of sublimation
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Lsub(T0) = 2.835 106 J kg−1

L0
v a latent heat shortcut notation

N2 squared BVF notations (N2
m, N2

ns, N
2
DK , ...)

p = pd + e: local value for the pressure
pr = (pd)r + er: reference pressure (pr = p0)
pd local dry-air partial pressure
(pd)r reference dry air partial pressure (≡ pr − er)
p0 = 1000 hPa: conventional pressure
ψ a dummy variable (section 7 and Appendix B)
qd = ρd/ρ: specific content for dry air
qv = ρv/ρ: specific content for water vapour
ql = ρl/ρ: specific content for liquid water
qi = ρli/ρ: specific content for solid water
qsw specific content for saturating water vapour
qt = qv + ql + qi: total specific content of water
rv = qv/qd: mixing ratio for water vapour
rl = ql/qd: mixing ratio for liquid water
ri = qi/qd: mixing ratio for solid water
rr reference mixing ratio for water species: η rr ≡ er/(pd)r and rr ≈ 3.82 g kg−1

rsw mixing ratio for saturating water vapour
rt = qt/qd: mixing ratio for total water
ρd specific mass for the dry air
ρv specific mass for the water vapour
ρl specific mass for the liquid water
ρi specific mass for the solid water
ρ specific mass for the moist air = ρd + ρv + ρl + ρi
Rd dry air gas constant (287.06 J K−1 kg−1)
Rv water vapour gas constant (461.53 J K−1 kg−1)
R = qd Rd + qv Rv: gas constant for moist air = qd (Rd + rv Rv)
s the specific moist entropy associated with θs
s1 the specific moist entropy associated with (θs)1
sref a reference specific entropy
sd specific entropy for the dry air
sv specific entropy for the water vapour
sl specific entropy for the liquid water
s∗ a moist entropy (E94)
(sd)r reference values for the entropy of dry air at Tr and (pd)r
(sv)r reference values for the entropy of water vapour at Tr and er
s0d standard specific entropy for the dry air at T0 and p0: 6775 J K−1 kg−1)
s0v standard specific entropy for the water vapour at T0 and p0: 10320 J K−1 kg−1)
T local temperature
Tv virtual temperature associated to θv
Tρ E94’s version for Tv
Tr the reference temperature (Tr ≡ T0)
T0 zero Celsius temperature (= 273.15 K)
θ = T (p0/p)

κ: potential temperature
θ∗ a moist entropy potential temperature (E94)
θq a moist entropy potential temperature (DK82)
θE equivalent potential temperature
θv virtual potential temperature
θl liquid-water potential temperature
θs specific moist entropy potential temperature (M11)
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(θs)1 approximate version of θs
z vertical coordinate

Appendix B. General squared BVF formulations.

The method for computing the moist value of N2 is usually based on the classical approach of
DK82, where the adiabatic changes of the density of the parcel are evaluated and compared to
the corresponding values of the environment, leading to

N2
m =

(
g

ρ

∂ρ

∂z

)
par.

−
(
g

ρ

∂ρ

∂z

)
env.

. (B.1)

Let us consider the method based on the material published in PA08 and PCK10, where it is
stated that any thermodynamic variable ψ can be expressed in terms of the entropy s, the total
water content qt and the pressure p alone. It is true in particular for ψ representing any of the
temperature (T ), the specific volume (α), the density (ρ), the water contents (qv, ql, qi) or the
buoyancy (B), leading to ψ(s, qt, p).

It is indeed possible to use the set of three independent variables (s, qt, p) if it is assumed
that a parcel of moist atmosphere is either saturated (with qv equal to its saturated value and
with existing condensed water equal to qt − qv) or non-saturated (with no condensed water and
qt = qv). In this way, the condensed water contents ql and qi no longer appear as independent
variables of the system and they must be derived from the information given by (s, qt, p), with
either liquid water for T > T0 or solid water for T < T0.

The property (1) can be derived through a short mathematical method, starting with (B.1)
rewritten as

N2
m =

g

ρ

∂ρ

∂z

∣∣∣∣
s,qt

− g

ρ

∂ρ

∂z
. (B.2)

From the chain rule, the gradient of the density ρ(s, qt, p) is equal to

∂ρ

∂z
=

∂ρ

∂s

∣∣∣∣
p,qt

∂s

∂z
+

∂ρ

∂qt

∣∣∣∣
p,s

∂qt
∂z

+
∂ρ

∂p

∣∣∣∣
s,qt

∂p

∂z
. (B.3)

If hydrostatic conditions prevail, then dp = −ρg dz is applied twice in the last term of (B.3), this
last term being equal to

∂ρ

∂z

∣∣∣∣
s,qt

=
∂ρ

∂z
− ∂ρ

∂s

∣∣∣∣
p,qt

∂s

∂z
− ∂ρ

∂qt

∣∣∣∣
p,s

∂qt
∂z

. (B.4)

The property (1) is obtained with (B.4) inserted into (B.2).

Appendix C. The unsaturated moist squared BVF.

The properties ql = qi = 0 and qt = qv are used to derive the unsaturated moist air version of
the state equation (2) and of the virtual temperature definition (3), resulting in

ρ(T, qt, p) =
1

T

1

1 + δ qt

p

Rd
. (C.1)

The properties ql = qi = 0, qt = qv and rt = rv are used to transform the definitions (5) and
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(7) to express the entropy for unsaturated moist air as

s(T, qt, p) = sref + cpd ln (T ) + cpd λ qt ln

(
T

Tr

)
−Rd ln

(
p

p0

)
+ cpd Λr qt − cpd κ δ qt ln

(
p

pr

)
− cpd γ qt ln

(
rt
rr

)
+ cpd κ δ qt ln

(
1 + η rt
1 + η rr

)
+ cpd κ ln (1 + η rt) . (C.2)

The first partial derivative of ρ with respect to s (at constant values for p and qt) is computed
from (C.1) and with T = T (s, qt, p), leading to

∂ρ

∂s

∣∣∣∣
p,qt

= − ρ

T

∂T

∂s

∣∣∣∣
p,qt

. (C.3)

The partial derivative of T with respect to s (at constant values for p and qt) is obtained by
computing the derivative of (C.2) with respect to s and with T = T (s, qt, p) (i.e. involving only
the two terms in the first line on the R.H.S.), leading to

∂s

∂s

∣∣∣∣
p,qt

≡ 1 = cpd

(
1 + λ qt
T

)
∂T

∂s

∣∣∣∣
p,qt

, (C.4)

1

T

∂T

∂s

∣∣∣∣
p,qt

=
1

cpd (1 + λ qt)
=

1

cp
. (C.5)

From (C.3) and (C.5), the first partial derivative involved in the formulation (1) for the non-
saturated version of N2

m is equal to

∂ρ

∂s

∣∣∣∣
p,qt

= − ρ

cp
. (C.6)

The second partial derivative of ρ with respect to qt (at constant values for p and s) is computed
from (C.1) and with T = T (s, qt, p), leading to

∂ρ

∂qt

∣∣∣∣
p,s

= − ρ

T

∂T

∂qt

∣∣∣∣
p,s

− ρ

(
Rv
R
− T

Tv

)
. (C.7)

The partial derivative of T with respect to qt (at constant values for p and s) is obtained by
computing the derivative of (C.2) with respect to qt and with T = T (s, qt, p), to arrive at

∂s

∂qt

∣∣∣∣
p,s

≡ 0 =
cp
T

∂T

∂qt

∣∣∣∣
p,s

+ cpd ( Λr + Λv ) , (C.8)

where Λv is given by (10). This term is equal to 0 for the reference conditions T = Tr, p = pr
and rv = rr and, as such, it is expected to be a corrective term to Λr.

It is important to notice that the third term −γ ln(rv/rr) in the right-hand side of (10) becomes
infinite when rv tends to 0, leading to an ill-defined dry-air version of Λv. However, the contri-
bution to the moist squared BVF is proportional to the product of Λv by the gradient ∂qv/∂z.
Accordingly, the dry-air limit must be computed within a given dry region around q0 = qv(z0) = 0
and where qv(z) − q0 is positive and very close to zero, leading to a first order formulation of
qv(z) proportional to (z − z0)2, and to a gradient proportional to z − z0, and thus to

√
qv(z).

This result shows that the product Λv (∂qv/∂z) contains a term varying as ln(rv)
√
qv which has

0 as a limit when qv and rv = qv/(1− qv) tend to zero.
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The computations needed for deriving (C.8) and (10) are rather long. They have been obtained
with the help of the properties qt = qv, rt = rv, rt = qt/(1−qt), ∂rt/∂qt = (rt/qt)

2, rv = qv(1+rv),
κ η = γ, δ = η − 1 and in particular with the identity

qv
rv
− 1 + δ qv

1 + η rv
= 0 . (C.9)

From (C.7) and (C.8), the second partial derivative involved in the formulation (1) for the
non-saturated version of N2

m is equal to

∂ρ

∂qt

∣∣∣∣
p,s

= − ρ
[
Rv
R
−
cpd
cp

(Λr + Λv)

]
+ ρ

(
T

Tv

)
. (C.10)

In order to be consistent with the saturated version derived in the next Appendix, (C.10) can be
written differently. The last term (T/Tv) is replaced by (1 + η rv) (T/Tv) and the additional part
η rv (T/Tv) is then subtracted from the bracketed term of (C.10), together with the following
identities

Rv
R

+ η rv
T

Tv
= (1 + rv)

Rv
R

, (C.11)

(1 + η rv)
T

Tv
= (1 + rv) =

1

1− qv
. (C.12)

The result is

∂ρ

∂qt

∣∣∣∣
p,s

= − ρ
[
(1 + rv)

Rv
R
−
cpd
cp

(Λr + Λv)

]
+

ρ

1− qv
. (C.13)

Appendix D. The saturated moist squared BVF.

The saturated squared BVF is computed in this Appendix only using liquid water content,
since the hypotheses retained in the Appendix B do not allow the possibility of having liquid and
solid species in a parcel of moist air at the same time . In fact, the same hypothesis is made for
the derivation of the specific moist entropy formulation (5), with the sum Lvap ql + Lsub qi to be
understood as Lvap ql or Lsub qi, depending on T > 0 or T < 0, with either ql 6= 0 or qi 6= 0,
respectively. The ice content formula can be derived through the symmetry properties: Lvap
replaced by Lsub, ql by qi and rl by ri.

The properties qi = 0, qv = qsw(T, p, qt), and ql = qt − qsw(T, p, qt) are used to derive the
following saturated moist air version of the state equation (2), to arrive at

ρ(T, qt, p) =
1

T

1

1 + η qsw(T, p, qt)− qt
p

Rd
, (D.1)

qsw(T, qt, p) =
ε esw(T )

p− esw(T )
(1− qt) , (D.2)

ρ(T, qt, p) =
p− esw(T )

Rd T (1− qt)
. (D.3)

The liquid water saturated entropy can be written as

s(T, qt, p) = sref + cpd ln (T ) + cpd λ qt ln

(
T

Tr

)
−Rd ln

(
p

p0

)
+

Lvap
T

qsw − cpd

(
Lvap
cpd T

− Λr

)
qt − cpd κ δ qt ln

(
p

pr

)
− cpd γ qt ln

(
rsw
rr

)
+ cpd κ δ qt ln

(
1 + η rsw
1 + η rr

)
+ cpd κ ln (1 + η rsw) , (D.4)
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where Lvap only depends on T and where, from (D.2), rsw = qsw/(1− qt) only depends on T and
p.

The computations of the partial derivatives of ρ with respect to s or qt are more complicated
than for the unsaturated cases and the following properties must be taken into account:

1

esw

desw
dT

=
Lvap(T )

Rv T 2
, (D.5)

cpd (1 + λ qt) + (cl − cpv) ql = cp , (D.6)

Lvap(T ) + (cl − cpv)T = L0
v = Cste , (D.7)

− T 2 ∂

∂T

(
Lvap(T )

T

)
= L0

v , (D.8)

p

p− esw(T )
= 1 + η rsw(T, p) , (D.9)

qt
rsw
− 1 + δ qt

1 + η rsw
=

ql
rsw (1 + η rsw)

, (D.10)

(1 + η rsw)
T

Tv
=

1

1− qt
, (D.11)

p− esw
p (1− qt)

=
T

Tv
=

Rd
R

=
1

1 + η qsw − qt
. (D.12)

The derivative at constant pressure of the saturating specific content and mixing ratio are equal
to

∂qsw(T, qt, p)

∂T

∣∣∣∣
p,qt

= (1 + η rsw)
Lvap qsw
Rv T 2

, (D.13)

∂rsw(T, p)

∂T

∣∣∣∣
p,qt

= (1 + η rsw)
Lvap rsw
Rv T 2

. (D.14)

Moreover, chain rules are applied to the derivatives of qsw(T, qt, p) and rsw(T, p), leading to

∂qsw(T, qt, p)

∂s

∣∣∣∣
p,qt

=
∂qsw
∂T

∣∣∣∣
p,qt

∂T

∂s

∣∣∣∣
p,qt

, (D.15)

∂rsw(T, p)

∂s

∣∣∣∣
p,qt

=
∂rsw
∂T

∣∣∣∣
p

∂T

∂s

∣∣∣∣
p,qt

. (D.16)

The previous properties allow the computation of the first partial derivative of (D.1) with
respect to s (at constant values for p and qt), leading to

∂ρ

∂s

∣∣∣∣
p,qt

= − ρ D1w
1

T

∂T

∂s

∣∣∣∣
p,qt

, (D.17)

where D1w is given by (17).

The partial derivative of T with respect to s (at constant values for p and qt) is obtained by
computing the derivative of (D.4) with respect to s and with T = T (s, qt, p), to arrive at

∂s

∂s

∣∣∣∣
p,qt

≡ 1 = D2w
cp
T

∂T

∂s

∣∣∣∣
p,qt

, (D.18)

where D2w is given by (18).
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From (D.17) and (D.18), the first partial derivative involved in the liquid-water saturated
formulation (1) for N2

m is equal to

∂ρ

∂s

∣∣∣∣
p,qt

= − ρ

cp

D1w

D2w
. (D.19)

The difference with the non-saturated case (C.6) is the extra term (D1w/D2w).

The second partial derivative of ρ with respect to qt (at constant values for p and s) is computed
from (D.1) with T = T (s, qt, p) and with the chain rule applied to the derivative of qsw(T, qt, p),
leading to

1

ρ

∂ρ

∂qt

∣∣∣∣
p,s

= − D1w

T

∂T

∂qt

∣∣∣∣
p,s

+
1

1− qt
. (D.20)

The term D1w is again given by (17).

The partial derivative of T with respect to qt (at constant values for p and s) is obtained by
computing the derivative of (D.4) with respect to qt, with T = T (s, qt, p) and with chain rules
applied to qsw(T, qt, p) and rsw(T, p), leading to

∂qsw
∂qt

∣∣∣∣
p,s

= (1 + η rsw)
Lvap qsw
Rv T 2

∂T

∂qt

∣∣∣∣
p,s

− rsw , (D.21)

∂s

∂qt

∣∣∣∣
p,s

≡ 0 = D2w
cp
T

∂T

∂qt

∣∣∣∣
p,s

− (1 + rsw)
Lvap
T

+ cpd ( Λr + Λsw ) . (D.22)

The term D2w is again given by (18). The term Λsw is equal to the non-saturated version of Λv
given by (10), but expressed for the saturated conditions rv = rsw, leading to (15).

Even if the results are compact and consistent at first sight with (C.8) and (10), the compu-
tations made to derive (D.22) and (15) are rather long. They have been obtained by taking into
account the properties qi = 0, qv = qsw(T, qt, p), qt = qsw + ql, together with the results (D.2) to
(D.14).

From (D.20) and (D.22), the second partial derivative involved in the formulation (1) for N2
m

is thus equal to

∂ρ

∂qt

∣∣∣∣
p,s

= − ρ D1w

D2w

[
(1 + rsw)

Lvap
cp T

−
cpd
cp

(Λr + Λsw)

]
+

ρ

1− qt
. (D.23)

Appendix E. Comparisons with the buoyancy formulations.

The specific moist entropy formulations (9) and (14) have been obtained without any approx-
imation, except the hydrostatic one used in the Appendix B to demonstrate the generic BFV
formula (1).

The advantage of the formulations (9)-(14) is that they are expressed in terms of the gradients of
the more general conservative variables, i.e. the specific moist entropy and the chemical fractions
of the parcel (or equivalently the concentrations in dry air or total water content).

It is generally accepted that the non-saturating squared BVF may be defined by

N2
v =

g

θv

∂θv
∂z

. (E.1)

It may be important to try to express the specific moist entropy formulations (9) and (14) in
terms of the vertical gradient of the buoyancy potential temperature θv given by (3).
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Let us derive the non-saturated moist air formula (9) in terms of the vertical gradient of qv = qt
and θv by computing both the vertical gradient of θv and the vertical gradient of the specific moist
entropy (5), with θs given by (7) and with the hydrostatic assumption, leading to

g

θv

∂θv
∂z

=
g

θ

∂θ

∂z
+ g δ

T

Tv

∂qv
∂z

, (E.2)

g
cpd
cp

∂ ln(θs)

∂z
=

g

θ

∂θ

∂z
+

g cpd
cp

(Λr + Λv)
∂qv
∂z
− g2 qv

cp Tv
(λ− δ) . (E.3)

When (E.3) and (E.2) are inserted into the non-saturated moist air formula (9), most of the
terms cancel out and the final result is

N2
ns =

g

θv

(
∂θv
∂z
− Γc/ns

)
. (E.4)

The comparison of (E.1) with (E.4) shows that a non-saturated counter-gradient term Γc/ns
appears. It is equal to

Γc/ns =
g

cp

θ

T
(λ− δ) qv . (E.5)

It depends on qv and, for a typical moist PBL where qv = 10 g kg−1, θ ≈ T and cp ≈
1000 J K−1 kg−1, the values λ − δ ≈ 0.23 leads to Γc/ns ≈ 0.023 K km−1. This implies a
contribution of −0.008 10−4 s−2 to N2

ns. It is a small term when it is compared to significant
values of N2

ns which are typically about 100 times larger.

Appendix F. Transitions betwen unsaturated and saturated formulations.

When comparing both unsaturated and saturated moist expressions for the squared BVF, one
notices a good deal of similarity: the “water lifting term” is the same, the multiplying gradients
are identical and there are thus only three kinds of transitions to consider. The first one is the
natural expression of the terms depending on rv in the unsaturated case by the equivalent in
terms of rsw in the saturated case, this being applied to both the (1 + rv) multiplicator and to
the Λv expression. The second one is the transition between lapse rates Γns and Γsw, i.e. the
multiplication by D1w/D2w. The third one is the replacement of (cp Rv)/R by Lvap/T .

The crucial point for ensuring a complete and smooth transition between the two formulations
is that, together with the logical number one transition, going from D1w/D2w to 1 and from
Lvap/T to (cp Rv)/R both just require replacing (Lvap R)/(cp Rv T ) by 1!

A simple way to create a generalized N2 formula on the basis of this structural symmetry
between both transitions is therefore to define

F (C) = 1 + C

[
Lvap
cp T

R

Rv
− 1

]
E

, (F.1)

DC =

(
Lvap rsw
Rd T

)
E

, (F.2)

M(C) =
1 +DC

1 +DC F (C)
, (F.3)

for obtaining

N2(C) = g
cpd
cp

M(C)

(
∂ ln(θs)

∂z

)
E

+ g

(
∂ ln(qd)

∂z

)
E

+ g M(C) F (C)

[
(1 + rv)

Rv
R

]
E

(
∂qt
∂z

)
E

− g
cpd
cp

M(C) [ Λr + Λv ]E

(
∂qt
∂z

)
E

. (F.4)
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In the above set of equations the subscript “E” represents the environmental value of any moist
air parcel, independently whether the conditions are fully unsaturated, partly saturated or fully
saturated.

Even if the exact identity between both analytical manifestations of the transition via F (C)
is a welcome result, there is some physical consistency in having the same term playing the key
role in the lessening of the resistance to buoyant motions when condensation occurs on the one
hand and in the replacement within the buoyancy term of gaseous density effects by latent heat
release impacts on the other hand.

It can be verified that the two formulas (9) and (14) are obtained from (F.4) by the two limit
cases described in the Table F.1. Furthermore the product of F (C) by M(C) within the last but
one term clearly shows that we have here more than a linear interpolation of N2 between the two
extreme cases, as indicated by the non-linear heavy solid curve depicted in Figure F.1.

In fact, the special regime that cancels the second and third lines of (F.4) corresponds to the
property

C0

(
Lvap
cp T

R

Rv
− 1

)
=

cpd
cp

(
Λr + Λv
1 + rv

)
R

Rv
− 1 . (F.5)

For the typical values Λr ≈ 5.87, Λv ≈ −0.32, R/Rv ≈ 0.622 and T = 283 K, then Lvap/(cpT ) ≈
8.6 and (Λr+Λv)/(1+rv) ≈ 5.5, leading to the reversal value C0 ≈ (5.5×0.622−1)/(8.6×0.622−
1) ≈ 0.55. This value of C0 can be associated with the approximate 5.5/8.6 ≈ 2/3 position of θs
between θl and θE , as seen in Figures 2 and 4(a).

Figure F.1: The curves F (C) and M(C), defined by (F.1) to (F.3), are computed for the “just-saturated”
conditions (T = 10 C, p = 900 hPa, qv = qsw, ql = 0) and for C varying from 0 (unsaturated) to 1
(saturated). The values 0 and 1 are depicted as thin horizontal and solid lines. The third curve M(C) [(1+
rv)Rv F (C)/R− (cpd/cp) (Λr + Λv) ] corresponds to the new extra term in the second line of (F.4), with
a thin line added to show that the zero value is obtained for C0 ≈ 0.55.

Lastly, on top of the contribution for obtaining θs, (F.4) clearly separates the roles of qt and
qv in the rest of the N2 expression. The total content qt (or its complement to one qd) is present
only through its vertical gradient, a key quantity in our way of obtaining the squared BVF. The
water-vapour content qv is present only in the second- and third-lines parenthesis via the moist
definition of cp, (1+rv) and Λv, under the implicit understanding that it will equal qsw for C = 1
in all these occurrences. One should nevertheless realize that, numerically speaking, the above
implicit assumption may not be perfectly obeyed without this having any bad consequences for
the computation of a generalized moist squared BVF according to Equation (F.4).

There are however some caveats associated with the use of N2(C). First, it is clear that except
in the extreme homogeneous cases corresponding to C = 0 and to C = 1, the squared BVF
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Table F.1: The values for F (C) and M(C) for the unsaturated case defined by C = 0 and (qv, rv, Λv),
and for the saturated case defined by C = 1 and (qsw, rsw, Λsw). The moist formulations of cp and R
slightly depend on qd = 1− qt, qv, ql or qi.

C = 0 C = 1

F (C) 1 (Lvap R)/(cp Rv T )

M(C) 1 D1w/D2w

looses its original meaning associated with the period of natural oscillations of an air parcel
displaced along the vertical. Second, it is no longer possible to find an equivalent of (1) leading
to (F.4), since the simplifications allowing us to express T as a function of s, qt and p (as used in
Appendices C and D) have no equivalent in the case of a grid-mesh partly saturated and partly
unsaturated.

Nevertheless, N2(C) has the physical dimension of a squared BVF, and its expression closely
follows, term by term, the physical logic explained in the sections 6 and 7. It is thus our belief that
it might be used in some applications, provided that the meaning of C is not over-interpreted.

Furthermore, by construction, the shape of this function is linked to the important issue already
discussed of the change of sign of the terms in the second lines of (9) and (14). It is expected
that the unstable (stable) feature of isentropic motions of moist air, which is in correspondence
with saturated (unsaturated) condition, must also have a neutral case in between. Even if the
definition of a transition parameter remains a complex issue, well beyond the scope of the present
work, N2(C) offers a monotonic path leading to some “moist neutrality” for a value of C within
the interval [0, 1].
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