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ABSTRACT

Ensembles used for probabilistic weather forecasting tend to be biased and underdispersive. This paper

proposes a statistical method for postprocessing ensembles based on quantile regression forests (QRF), a

generalization of random forests for quantile regression. This method does not fit a parametric probability

density function (PDF) like in ensemble model output statistics (EMOS) but provides an estimation of de-

sired quantiles. This is a nonparametric approach that eliminates any assumption on the variable subject to

calibration. This method can estimate quantiles using not only members of the ensemble but any predictor

available including statistics on other variables.

The method is applied to the Météo-France 35-member ensemble forecast (PEARP) for surface temper-

ature and wind speed for available lead times from 3 up to 54 h and compared to EMOS. All postprocessed

ensembles are much better calibrated than the PEARP raw ensemble and experiments on real data also show

that QRF performs better than EMOS, and can bring a real gain for human forecasters compared to EMOS.

QRF provides sharp and reliable probabilistic forecasts. At last, classical scoring rules to verify predictive

forecasts are completed by the introduction of entropy as a general measure of reliability.

1. Introduction

In recent years, meteorologists have seen the rise of

ensemble forecasting in numerical weather prediction

and its development in national meteorological services.

Ensemble forecasting is clearly a necessary tool that

complements deterministic forecast. Ensemble forecasts

seek to represent and quantify different uncertainty sour-

ces in the forecast: observation errors or a mathematical

representationof the atmosphere still incomplete. In practice

ensemble forecasts tend to be biased and underdispersed

(Hamill and Colucci 1997; Hamill and Whitaker 2006).

Several techniques for the statistical postprocessing of

ensemble model output have been developed to square

up to these shortcomings. Local quantile regression and

probit regression were used for probabilistic forecasts of

precipitation by Bremnes (2004). Other techniques of

regression like censored quantile regression have been

applied to extreme precipitation (Friederichs andHense

2007) and logistic regression was employed for proba-

bilistic forecasts of precipitation (Hamill et al. 2008;

Wilks 2009; Ben Bouallègue 2013). Two approaches are

baseline in postprocessing techniques: the Bayesian

model averaging (BMA; Raftery et al. 2005) and the

ensemblemodel output statistics (EMOS;Gneiting et al.

* Current affiliation: Laboratoire des Sciences du Climat et de

l’Environnement, CNRS, Saclay, France.

Corresponding author address: Maxime Taillardat, Direction des

Opérations/COMPAS, Météo-France, 42 avenue Gaspard Cori-

olis, Toulouse 31057, France.

E-mail: maxime.taillardat@meteo.fr

Denotes Open Access content.

JUNE 2016 TA I L LARDAT ET AL . 2375

DOI: 10.1175/MWR-D-15-0260.1

� 2016 American Meteorological Society
Unauthenticated | Downloaded 03/01/22 04:05 PM UTC

mailto:maxime.taillardat@meteo.fr


2005). Whereas the BMA predictive distribution is a

mixture of PDF depending on the variable to calibrate,

the EMOS technique fits a single PDF from a raw en-

semble. All parameters of theses PDFs are generally

fitted on a sliding training period. In meteorology, BMA

has been studied for many variables such as surface

temperature (Raftery et al. 2005), quantitative precipita-

tion (Sloughter et al. 2007), surface wind speed (Sloughter

et al. 2010), or surface wind direction (Bao et al. 2010).

Meanwhile EMOS techniques have been used for surface

temperature (Gneiting et al. 2005; Hagedorn et al. 2008),

quantitative precipitation (Scheuerer 2014), surface wind

speed (Thorarinsdottir and Gneiting 2010; Baran and

Lerch 2015), wind vectors (Pinson 2012; Schuhen et al.

2012), or peak wind (Friederichs and Thorarinsdottir

2012). More recently, Hemri et al. (2014) have applied

EMOS to many variables.

In this paper we define a new nonparametric post-

processing method based on quantile regression forests

(QRF) developed by Meinshausen (2006). Our QRF

method will be compared to EMOS, which is efficient and

simple to implement in an operational context by national

meteorological services. The QRF technique has already

been used by Juban et al. (2007) for wind energy and by

Zamo et al. (2014b) for photovoltaic electricity production.

The paper is organized as follows: in section 2 we de-

scribe the QRF technique in detail and we do a quick re-

view of the EMOS technique. We explain how we verify

ensemble forecasts. Guided by Gneiting et al. (2007) we

apply tools like rank histograms and indices to quantify

their behavior, in particular we introduce entropy for ver-

ification of reliability. Scoring rules like the continuous

ranked probability score (CRPS) is also presented to assess

both reliability and sharpness. Section 3 presents a case

study comparing postprocessing techniques for surface

temperature and surface wind speed over 87 French loca-

tions at 18 lead times using observations and the French

ensemble forecast system of Météo-France called PEARP

(Descamps et al. 2015). Data comprise 4 years between

1 January 2011 and 31 December 2014 using initializations

at 1800 UTC. Section 4 shows general results of post-

processing techniques for studied variables. The QRF

forecast and more particularly QRF forecasts based on

multivariable predictors are better calibrated than EMOS

forecasts and bring a real gain in comparison to this tech-

nique. The paper closes with a discussion in section 5.

2. Methods

a. Quantile regression forests

For a calibration purpose theQRFmethod can be linked

with the method of analogs (Hamill and Whitaker 2006;

Delle Monache et al. 2013): its goal is to aggregate mete-

orological situations according to their forecasts, assuming

that close forecasts lead to close observations. So, our

QRF method aggregates observations according to their

forecasts by iterative binary splitting on predictors. At the

end we have for everymeteorological situation restored a

group of observations that creates an empirical cumula-

tive distribution function (CDF). This method requires a

large learning sample but has the advantages of being

nonlinear and to potentially use others predictors than

only the raw ensemble forecast.

We now describe the QRF method and explain the

different means used to verify our ensemble forecasts.

Let us remember that a quantile of order a is a value

xa such that the probability that the random variable

will be less than xa is a. Thus, a is the value of the CDF

for xa:

Pr[X# x
a
]5a . (1)

While classical regression techniques allow us to esti-

mate the conditional mean of a response variable,

quantile regression allows us to estimate the conditional

median or any other quantile of the response variable

given a set of predictors (Koenker and Bassett 1978).

Quantile regression such as QRF consists in building

random forests from binary decision trees called classi-

fication and regression trees (CART), which are pre-

sented below. This is a nonlinear approach.

1) DECISION TREES (CART)

This technique (Breiman et al. 1984) consists in

building binary decision trees whose interpretation is

very easy. Zamo et al. (2014a) explain this technique in

detail. The binary decision tree method consists in an

iterative split of the data into two groups. This split is

done according to some threshold of one of the pre-

dictors for quantitative predictors or according to some

groups of modalities for qualitative predictors. The

predictor and the threshold or grouping are chosen in

order to maximize the homogeneity of the correspond-

ing values of the response variable in each of the re-

sulting groups. Homogeneity is defined as the sum of

variances of the response variable within each groups:

let D 0 be a group to split and D 1 and D 2 the two re-

sulting groups. The variance of a group is

yðD
i
Þ5 �

y2D i

½y2 yðD
i
Þ�2 . (2)

With t the threshold or grouping for a predictor in the

predictors’ space E , we define the homogeneity as

Hðt,D
0
Þ5 yðD

0
Þ2 ½yðD

1
Þ1 yðD

2
Þ�$ 0: (3)
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And we choose t such as

Hðt,D
0
Þ5 max

t2E
½Hðt,D

0
Þ�. (4)

Each resulting group is itself split into two, and so on

until some stropping criterion is reached, which can be a

minimum number of data or an insufficient decrease in

the resulting groups’ variance. Finally, for each final

group (called leaves), the predicted value is the mean of

observed values of the variable response belonging to

the leaf. To avoid overfitting, binary trees are pruned at

the splitting level that minimizes the squared error loss

function estimated by cross validation. When one is

faced with a new prediction situation, one follows the

path in the tree with the value of the situation’s pre-

dictors until a final leaf is reached. The forecast value is

the mean of the predictand’s values grouped in this leaf.

Binary regression trees are easily interpretable because

they can be represented by a decision tree, each node

being the criterion used to split the data and each final

leaf giving the predicted value. The interested reader

can refer to Hastie et al. (2009, 305–312, 587–602) for

detailed explanations.

2) BOOTSTRAP AGGREGATING (BAGGING)

According to the previous scheme, a tree can be a very

unstable model (i.e., very dependent on the learning

sample used for estimation). Breiman (1996) proposed

to grow several trees and to average their predicted

values to yield a more stable final prediction. This would

require a lot of data in order to build enough indepen-

dent trees. Since such a big amount of data is usually not

available, bootstrap samples are usually used to build

the trees. This means that artificial samples of data are

simulated by randomly drawing with replacement

among the original data. The complexity of the model is

tuned with the number of bagged trees, and each indi-

vidual tree is not pruned. The principle of bagging can be

applied to other regression methods than binary trees.

3) RANDOM FORESTS

Since the binary trees used in bagging are built from

the same data, they are not statistically independent and

the variance of their mean cannot be indefinitely de-

creased. To make the bagged trees more independent,

Breiman (2001) proposed to add another randomization

FIG. 1. Rank histograms for the Lyon airport for a 36-h forecast of surface temperature. The raw ensemble is clearly biased and

underdispersed. QRF techniques are very efficient.

FIG. 2. Rank histograms for the Paris-Orly airport for a 36-h forecast of surface temperature. The raw ensemble is clearly biased and

underdispersed. QRF techniques are very efficient.
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step to bagging. Each split of each bagged tree is built

on a random subset of the predictors. Hence, this method

is called random forest. As in bagging, the overfitting

problem is solved by tuning the number of trees.

4) QUANTILE REGRESSION FORESTS

Quantile regression forests (Meinshausen 2006) are a

generalization of random forests and give a robust,

nonlinear, and nonparametric way of estimating condi-

tional quantiles. Whereas random forests approximate

the conditional mean, quantile regression forests deliver

an approximation of the full conditional distribution. In

the same way as random forests, a quantile regression

forest is a set of binary regression trees. But for each

final leaf of each tree, one does not compute the mean of

the predictand’s values but instead their empirical CDF.

Once the random forest is built, one determines for a

new vector of predictors its associated leaf in each tree

by following the binary splitting. Then the final forecast

is the CDF computed by averaging the CDF from all the

trees. Thus, predictive quantiles are directly obtained

from the CDF. By construction, the final CDF is boun-

ded between the lowest and the highest value of the

learning sample. For example, it is not possible to

forecast a negative quantile of wind speed and QRF is

unable to forecast a quantile higher than the maximum

measured in the training sample.

5) MODEL FITTING

The QRF method is used with different inputs here.

The first, called QRT_O, uses as predictors only those

statistics on the variable. The second, called QRT_M,

contains not only statistics on the variable to calibrate

but also on other meteorological variables issued from

the ensemble: this is a multivariable approach. The lists

of predictors are given in appendix A. For these vari-

ants, one must fit the number of trees and the size of the

leaves. For temperature, the final leaf size is set to 10 and

the number of tree is set to 300, which is a good com-

promise between quality and computation speed. For

TABLE 1. Results for surface temperature at two locations for a 36-h forecast. QRF_M performs better than other techniques and gives

sharp ensembles.

CRPS D k«k2 k«k‘ V E(Z) V(Z) IQR

Lyon

Raw ensemble 1.221 0.891 0.38 0.37 0.752 0.762 1.12 1.232

EMOS 0.804 0.175 0.036 0.013 0.992 0.496 0.991 1.874

QRF_O 0.828 0.224 0.048 0.020 0.988 0.482 1.07 1.783

QRF_M 0.790 0.190 0.040 0.019 0.992 0.481 1.00 1.825

Paris-Orly

Raw ensemble 0.851 0.578 0.21 0.19 0.895 0.669 1.19 1.278

EMOS 0.694 0.156 0.031 0.010 0.995 0.509 0.996 1.548

QRF_O 0.703 0.150 0.032 0.013 0.995 0.513 1.05 1.450

QRF_M 0.671 0.147 0.032 0.013 0.995 0.507 0.957 1.531

FIG. 3. Box plot of rank histograms for all locations for 36-h forecast of surface temperature. QRF_M tends to be a little overdispersed.

There is a little overdispersion for EMOS.
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wind speed, the final leaf size is 20 and the number of

trees is set to 400. Note that these parameters are set em-

pirically by means of cross validation (not shown here).

b. Ensemble model output statistics

A description of the EMOS technique is given in

Gneiting and Katzfuss (2014). The EMOS predictive

distribution is a single parametric PDF whose parame-

ters depend on the ensemble values. For example, it

could be a normal density, where the mean is a bias

corrected affine function of the ensemble members and

the variance is a dispersion-corrected affine function of

the ensemble variance.

MODEL FITTING

The EMOS technique was used considering the high-

resolution forecast called ARPEGE (Courtier et al.

1991), with the control member of the raw ensemble and

the mean of the raw ensemble as predictors as in Hemri

et al. (2014). The parameter vector is estimated by

means of a CRPSminimization over themoving training

period. Following Scheuerer (2014) we use as the ini-

tialization vector for a day the vector issued from the

optimization at the precedent day. The optimization

process is stopped after a few iterations to avoid

overfitting.

For surface temperature, distributions tried in EMOS

are the normal distribution and the logistic distribution.

We finally keep the normal distribution, which is clas-

sical for temperatures. For wind speed, distributions

tested are the truncated normal, gamma, truncated lo-

gistic, and square root–transformed truncated normal

following Hemri et al. (2014). This last model performs

best and is kept throughout the study. The correct for-

mula for the corresponding CRPS is given in appendix B

and we use it for our study.

c. Assessing sharpness and calibration

Gneiting et al. (2007) propose to evaluate predictive

performance based on the paradigm of maximizing the

sharpness of the predictive distributions subject to cali-

bration. Calibration refers to the statistical consistency

between forecasts and observations. Also called re-

liability this is a joint property of predictions and events

that materialize. Sharpness refers to the spread of pre-

dictive distributions and is a property of the forecasts

FIG. 4. Box plot of different scores for all locations for 36-h forecast of surface temperature.QRF_M technique has better CRPS for almost

all stations according to the CRPS skill score. All calibrated ensembles are unbiased, reliable, and quite well dispersed.

JUNE 2016 TA I L LARDAT ET AL . 2379

Unauthenticated | Downloaded 03/01/22 04:05 PM UTC



only. For example, a climatological forecast would be

reliable, but would have a poor sharpness.

1) SHARPNESS

To assess sharpness, we use summaries of the width of

prediction intervals as in Gneiting et al. (2007). For ex-

ample, we can introduce the average width of the central

50% prediction interval, the 90% prediction interval, or

both. In this study we check the width of the central 50%

prediction interval only, we denote it as interquartile

range (IQR) in the following results.

2) THE RANK HISTOGRAM AND THE PIT
HISTOGRAM

Rank histograms (RH), also called Talagrand dia-

grams were developed independently by Anderson

(1996), Talagrand et al. (1997), and Hamill and Colucci

(1997). We employ RH to check the reliability of an

ensemble forecast or a set of quantiles. AnRH is built by

ranking observations according to associated forecasts.

Reliability implies that each rank should be filled with

the same probability. Calibrated ensemble prediction

systems should result in a flat RH. The opposite is not

true: a flat RH may not refer to a calibrated system

(Hamill 2001). In a general way, a U-shaped histogram

refers to underdispersion or conditional bias, a dome-

shaped generally refers to overdispersion, while a non-

symmetric histogram refers to bias. A PIT histogram

is the continuous version of the RH and permits to

check reliability between observations and a pre-

dictive distribution by calculating Z0 5F(Y), where Y

is the observation and F is the CDF of the associated

predictive distribution. Subject to calibration, the

random variable Z0 has a standard uniform distribu-

tion (Gneiting and Katzfuss 2014) and we can check

ensemble bias by comparing E(Z0) to 1/2 and ensemble

dispersion by comparing the variance var(Z0) to 1/12.

We apply this approach to a RH with K1 1 ranks using

the discrete random variableZ5 [rank(y)2 1]/K. Subject

to calibration, Z has a discrete standard uniform distri-

bution with E(Z)5 1/2 and a normalized variance of

V(Z)5 12[K/(K1 2)] var(Z)5 1.

Moreover, Delle Monache et al. (2006) introduce the

reliability or discrepancy index for a RH with K 1 1

ranks:

D5 �
K11

i51

����fi 2 1

K1 1

����5 �
K11

i51

j«
i
j5 k«k

1
, (5)

where fi is the frequency of observations in the ith rank.

We can complete this tool by checking k«k2 (quadratic
index) or k«k‘ (max index), which are more sensitive to

bigger errors than D.
Another tool that we will use to assess calibration is

the entropy, called c here:

V5
21

log(K1 1)
�
K11

i51

f
i
log( f

i
) . (6)

For a calibrated system the entropy is maximum and

equals 1. Tribus (1969) showed that entropy is a tool for

estimating reliability and it is linked with the Bayesian

psi test. Entropy is also a propermeasure of reliability used

in the divergence score described in Weijs et al. (2010).

3) RELIABILITY DIAGRAM

The reliability diagram (Wilks 1995) is a common

graphical tool to evaluate and summarize probability

forecasts of a binary event. We use the term probability

because this tool evaluates a prediction based on a

threshold exceedance for a given parameter (e.g., the

frost probability). It consists of plotting observed frequen-

cies against predicted probabilities. Subject to calibration,

the resulting plot should be close to the first bisecting line.

Nevertheless, this tool should be computedwith a sufficient

number of observations (which is the case in our study) as

recalled by Bröcker and Smith (2007).

d. Scoring rules

Following Gneiting et al. (2007), Gneiting and Raftery

(2007), and Gneiting and Katzfuss (2014), scoring rules

assign numerical scores to probabilistic forecasts and

form attractive summary measures of predictive per-

formance, since they address calibration and sharpness

FIG. 5. Reliability diagram for probabilistic 36-h forecast of frost

for all locations. Dotted lines represent climatology. Calibrated

ensembles are almost perfect here.
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simultaneously. These scores are usually taken to be neg-

atively oriented and we wish to minimize them. A proper

scoring rule is designed such that the expected value of the

score isminimizedwhen the observation is drawn from the

same distribution than the predictive distribution.

Following Ferro et al. (2008), if F represents an en-

semble forecast with members x1, . . . , xK 2 R, a so-called

fair estimator of the CRPS (Ferro 2014) is given by

bCRPS(F, y)5
1

K
�
K

i51

jx
i
2 yj2 1

2K(K2 1)
�
K

i51
�
K

j51

jx
i
2 x

j
j .

(7)

We can also define the skill score in term of CRPS

between two ensemble prediction systems, in order to

compare them directly:

CRPSS(A,B)5 12
CRPS

A

CRPS
B

. (8)

The value of the continuous ranked probability skill score

(CRPSS) will be positive if and only if system A is better

than system B for the CRPS scoring rule.

Some theoretical and analytic formulas for CRPS for

several distributions are available in appendix B.

3. Analysis of the French operational ensemble
forecast system (PEARP)

We now compare QRF and EMOS techniques for

lead times from 3 up to 54 h for forecasts of surface

temperature and wind speed over 87 French stations

using observations and the French ensemble forecast

system of Météo-France called PEARP (Descamps

et al. 2015). Data comprise 4 yr between 1 January 2011

and 31 December 2014 using initializations at 1800 UTC.

Verification and results are made over the years 2013

and 2014. The aim of our study is to compare both

techniques according to their specificities and advantages:

on the one hand the QRF method is nonparametric so it

needs a large data sample for learning, which is why we

employed a cross-validation method (each month of

years 2013 and 2014 are retained as validation data for

testing the model, while all 4 years of data without the

forecasted month are used for learning). On the other

FIG. 6. Mean scores with 95% bootstrap confidence intervals for all locations across lead times for surface temperature. QRF_M is the

best technique for CRPS and CRPSS. Calibrated ensembles are unbiased and in general better dispersed than raw ensembles. QRF

techniques tend to provide more reliable forecasts than EMOS (the raw ensemble entropy is around 0.75). The raw ensemble is the

sharpest, but it is not reliable.
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hand, a sliding period of the 40 last days prior the forecast

output as in Gneiting et al. (2005), Schuhen et al. (2012),

and Thorarinsdottir and Gneiting (2010) give good re-

sults for EMOS. But EMOS has to be tuned optimally

for a fair comparison, which is why for temperature all the

data available for each day (4 yr less the forecast day)

with a seasonal dependence like inHemri et al. (2014) are

taken. For wind speed, a sliding period of 1 yr gives the

best results for EMOS.

For verification, we choose for all methods to form a

K-member ensemble from predictive CDFs by taking

forecast quantiles at level i/(K1 1) for i5 1, . . . , K,

FIG. 7. Some forecasts for different meteorological situations where the QRF_M technique is useful for fore-

casters. (top left) QRF_M technique proposes cooler scenarios. (top right) The bimodality of raw ensemble is

preserved. (bottom left) Bimodality is still conserved but a mode is preferred to the other. (bottom right) QRF_M

technique proposes a unimodal PDF contrary to raw ensemble. The little segments on the x axis represents the 35

raw members: there are several members associated to the same temperature.

FIG. 8. Rank histograms for the Lyon airport for the 24-h forecast of surface wind speed. The raw ensemble is clearly biased and

underdispersed. QRF techniques are very efficient.
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respectively, to conciliate with PEARP raw ensemble

here K5 35. So all scores are computed with 35 quan-

tiles and rank histograms have 36 classes, but for

graphical reasons we show RH computed on 12 ranks

only (each group of 3 consecutive ranks are gathered

as a single rank).

4. Results

a. Surface temperature

We now give results for surface temperature. We

show an example for 36-h lead time (corresponding to

0600 UTC) at two locations which are Lyon and Paris-

Orly airports in France. Figures 1 and 2 show RH for all

presented methods. For both examples, the raw en-

semble is biased and underdispersive whereas EMOS

and QRF techniques show graphically good calibration.

Table 1 confirms these first results. We can see that the

raw ensemble is not reliable and has the worst CRPS.

EMOS and QRF techniques are unbiased and disper-

sion is satisfying. In a general way, the lowest CRPS are

for QRF_M. It is very interesting to notice that most of

the time all indices of reliability (discrepancy index,

quadratic index, max index, and entropy) exhibit the

same rankings for the different models. Reliability for

EMOS and QRF_O focuses only on the example of

Paris-Orly. The discrepancy index shows a better re-

liability for QRF whereas other indexes penalize this.

Thus, it is sometimes interesting to assess calibration

with several tools.

Now let us focus on all stations for a 36-h lead time.

Figure 3 shows RH for the three techniques where a box

plot represents the distribution of a rank for all stations.

Results are satisfying, all the RHs are unbiased, but we

have a ‘‘wavy’’ RH for EMOS whereas the RH for QRF

techniques seems to be better. Nevertheless we can

assume a slightly U-shaped RH for QRF_O and a

slightly dome-shaped for QRF_M to be signs of an un-

perfect dispersion. These first remarks are strengthened

by Fig. 4 where we see that the three calibration tech-

niques are unbiased and QRF techniques are a little

more reliable than EMOS technique for the discrepancy

index (we only show this index of reliability here ac-

cording to our previous remarks on indices of re-

liability), but we can assume that results are quite mixed

now. The diagnosis of spread ensembles exhibits a slight

FIG. 9. Rank histograms for the Paris-Orly airport for the 24-h forecast of surfacewind speed. This time, raw ensemble is not biased but still

underdispersed.

TABLE 2. Results for surface wind speed at two locations for a 24-h forecast. QRF_M performs better than other techniques and gives

sharp ensembles.

CRPS D k«k2 k«k‘ V E(Z) V(Z) IQR

Lyon

Raw ensemble 0.858 0.538 0.19 0.17 0.906 0.422 1.51 1.090

EMOS 0.765 0.241 0.060 0.045 0.984 0.501 1.09 1.595

QRF_O 0.759 0.212 0.045 0.016 0.990 0.504 1.07 1.492

QRF_M 0.735 0.184 0.039 0.019 0.992 0.510 1.03 1.523

Paris-Orly

Raw ensemble 0.739 0.526 0.27 0.12 0.917 0.517 1.58 0.9487

EMOS 0.630 0.202 0.042 0.019 0.991 0.498 1.05 1.454

QRF_O 0.656 0.204 0.043 0.019 0.991 0.470 1.06 1.352

QRF_M 0.613 0.176 0.036 0.015 0.993 0.483 0.998 1.318
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underdispersion for QRF_O and a little overdispersion

for QRF_M even if the box plot is close to 1. There are

three main remarks when we are looking at Fig. 4. First,

we can assume that contrary to the raw ensemble, all box

plots concerning reliability are quite small for the three

techniques of calibration: we can say that performances

of techniques of calibration for reliability do not depend

on location or on time. In addition, we can see that the

FIG. 10. Box plot of rank histograms for all locations for 24-h forecast of surface wind speed. QRFRH are almost flat whereas EMOSRH

has a high first rank.

FIG. 11. Box plot of different scores for all locations for 24-h forecast of surface wind speed. QRF_M technique has better CRPS for

almost all stations according to theCRPS skill score.All calibrated ensembles are unbiased, reliable, andwell dispersed even if there is still

a little bit of underdispersion for EMOS.
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IQR box plots for calibrated ensembles are taller than

the raw ensemble. And last but not least, when we focus

on the CRPS skill score computed with regard to

QRF_M for each station we see that almost all the

values of the different box plots are under 0: not only

doesQRF_Mhave a better CRPS in general but QRF_M

is better in CRPS than all other ensembles and this is true

for almost all stations in this study.

We also investigate performances of probabilistic

forecasts of frost for all stations for the 36-h lead time.

Figure 5 shows reliability diagrams for all ensembles.

We can see very good performances of calibrated en-

sembles whereas raw ensemble tends to overpredict

frost. This is not surprising since in Fig. 4 we see that the

raw ensemble is essentially cold biased.

We continue this study on surface temperature by

showing results across lead times in Fig. 6. We note that

raw ensemble follows a diurnal cycle for all scores. This

phenomenon is not shared by calibration techniques

concerning reliability but just for CRPS and IQR: we

conclude that reliability is not influenced by lead time

for calibrated ensembles, only IQR is concerned and

thus the CRPS. In addition, the very good entropy of

calibrated ensembles (the raw ensemble entropy is around

0.75), which causes us to think that the gain is mainly in

reliability. It is interesting to see that raw ensemble does

not manage to conciliate good dispersion with small bias.

Moreover, reliability of the raw ensemble tends to in-

crease among lead times: indeed predictions are less sharp

so they can manage to catch the observation. Besides, we

note that calibrated ensembles still remain unbiased and

reliable with a preference for QRF techniques concerning

entropy and are quite well dispersed. The QRF_O tech-

nique is a little bit underdispersed and QRF_M is a little

bit overdispersed but both are quite close to 1. Last but

not least, we see for CRPS that QRF_O and EMOS are

very similar and the gap with QRF_M tends to remain the

same across lead times. We can explain the gain in CRPS

by the introduction of predictors from other variables

than surface temperature and show all the interest of

QRF_M method regarding QRF_O.

Now let us conclude by showing the interest of QRF

techniques and in particular QRF_M technique for

forecasters. In our opinion, the main issue of the EMOS

technique is that it loses one of the main aims of en-

semble forecasting, which is to assess different scenarios

from different initial conditions (i.e., to build different

trajectories that can converge or diverge in order to

create meteorological scenarios). Indeed, EMOS tech-

nique fits a single and unimodal PDF and does not

permit one to make alternative scenarios. In Fig. 7 we

have four examples of meteorological situations where

QRF_M can show all its interest: for Melun, France, in

Fig. 7 we have a situation with snowy ground and clear

skies during the night causing a rapid cooling. Here,

even if all calibrated ensembles give a mode around248
we can see that QRF_M proposes cooler scenarios. The

forecaster knowing this phenomenon of rapid cooling

would choose this scenario to make a deterministic

forecast for example. We can assume here that the

combined predictors snowfall amount and surface irra-

diation permit one to detect a nonlinear phenomenon.

For the forecast at Carcassonne, France, we see that the

raw ensemble is bimodal. QRF_M technique is able to

detect a situation conducting to a bimodality and so it

fits a bimodal PDF (and if this bimodality is just an ar-

tifact it is an artifact now shared by the raw ensemble

and the QRF_M ensemble). Moreover, observation

corresponds to the first mode of QRF_M PDF whereas

other calibrated ensembles are unimodal. It is the same

case for Boulogne-sur-Mer, France: the bimodal raw

ensemble leads to bimodal PDFs for QRF techniques

(second modes are between 188 and 198) and the first

mode is preferred and almost corresponds to observa-

tion. EMOS technique here fits the PDF in order to

avoid mistakes and put its mean between the two raw

ensemble modes. It can happen that meteorological

situations detected by QRF_M technique lead to a

unimodal PDF whereas the raw ensemble sees two dif-

ferent scenarios. It is the case of the forecast at Paris-Le

Bourget airport where QRF_M does not take into ac-

count the (misleading) raw ensemble bimodality and fits

its mode between these modalities, and is consistent

with the observation. Nevertheless, we remember that

FIG. 12. Reliability diagram for probabilistic 24-h forecast of

exceedance of the 5m s21 threshold in all locations. The dotted

lines represent climatology. Calibrated ensembles give reliable

probabilistic forecasts for this threshold.
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we cannot evaluate ensemble forecasts on single cases.

In Fig. 7, a BMA calibration was also made with the

same learning sample than EMOS. If BMA technique

permits bimodalities this is not the case here: we think

that the deterministic forecast, the control member, and

the mean of the raw ensemble are much too close to

have bimodalities. BMA should be more convenient

with ensembles made of several deterministic forecasts.

b. Surface wind speed

We now give results for surface wind speed. Like for

surface temperature we choose to begin with an example

for 24-h lead time (corresponding to 1800 UTC) at the

same locations. Figures 8 and 9 and Table 2 show RH

and scores for all presented methods. Mainly the com-

mentaries are the same as for surface temperature.

EMOS tends to be a little underdispersed.

Figure 10 showing RH for all stations confirms that

there is still a little issue with the first rank for EMOS:

this is likely due to a suboptimally chosen distribution

type. The square root–truncated normal distribution

used here minimizes the average CRPS on whole sta-

tions. The form of this distribution may not be optimal

for calibrated ensemble forecasting little wind speed.

This behavior is similar to the PIT histogram in the

middle of Fig. 5 of Scheuerer and Möller (2015). At the

same time we can note that QRF_M dispersion is almost

perfect. Figure 11 confirms the gooddispersion ofQRF_M.

We also note that calibrated ensembles seem unbiased

and QRF techniques provide reliable ensembles. Last

but not least, for temperatures the CRPS skill score

shows that the QRF_M method is the best in terms of

CRPS for almost all locations.

We can look at the performance of probabilistic forecast

of threshold 5ms21 for all stations and 24-h lead time.

Figure 12 reveals an overprediction of threshold exceed-

ances by raw ensemble, and this feature is corrected by

calibrated ensembles. It is not shown here but the results for

10ms21 are as good as for 5ms21. We have examined the

threshold of 15ms21, but there are not enough observations

and the reliability diagram is too noisy to be meaningful.

Figure 13 shows results across lead times for surface

wind speed. If conclusions are strictly the same as for

surface temperature, we can add here that sharpness and

entropy of QRF ensembles are better than EMOS. Last,

QRF techniques are very well dispersed and reliable and

FIG. 13. Mean scores with 95% bootstrap confidence intervals for all locations across lead times for surface wind speed. QRF_M is the

best technique for CRPS and CRPSS. Calibrated ensembles are unbiased and in general better dispersed than raw ensemble (the raw

ensemble entropy is around 0.85). QRF techniques tend to provide sharper, more reliable, and better dispersed forecasts than EMOS.
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thus QRF_O (and QRF_M of course) has much better

CRPS than EMOS. We can explain these differences

with surface temperature by the fact that finding a good

parametric distribution is a bit trickier for wind speed

than for temperatures and so EMOS performs less well

than QRF techniques in that case.

c. Importance of the QRF predictors

One of the peculiarities of the QRFmethod is that we

can see the most useful predictors for the model by

watching the importance of predictors: the importance

shows how much the mean-squared error of a whole

forest increases when a predictor is randomly permuted.

‘‘Randomly permuted’’ means that the values of the given

predictor are a random sample (without replacement) of

the original values. Indeed, if randomly permuting a pre-

dictor does not result in amuch largermean-squared error,

it means that this particular predictor is of little impor-

tance; whereas important predictorswill change the quality

of predictions by quite a bit if randomly permuted.

Figure 14 shows the importance of QRF_O predictors

for the 24-h forecast of the surface wind speed. As ex-

pected, themost important predictors are those that give

information on the center of the distribution. Next, we

have the month (a seasonal information) and the first and

the ninth decile. It is interesting to see that information on

spread or other moments is quite useless, these predictors

about spread and higher moments even have same im-

portance that artificially generated random variables (not

shown here). We can explain this by the fact that spread

information is already contained in decile predictors

(in addition to a value on the variable of interest), and it is

easier for the model to split meteorological situations by

their extreme quantiles rather than their predictability

summarized by a statistic such as standard deviation. It is

not shown here, but Fig. 14 also applies to another lead

time and the other variable, which is surface temperature

(with a slightly higher seasonal importance, however).

For the QRF_M method we focus on surface tempera-

ture to show that we can detect a meteorological consis-

tency in the QRF model. Figures 15 and 16 show the

importance of two different lead times (33h for 0300 UTC

and 42h for 1200 UTC). We can assume that both figures

have quite the same shape. Indeed, we find that central pa-

rameters, deciles, and the month are important. In addition,

the predictor TPW850 is also important: there is a clear

FIG. 14. Log importance of QRF_O predictors for the 24-h forecast of surface wind speed. A

box plot is composed of measures of log importance of all the forests and all the stations (so 24

forests 3 87 stations 5 2088 measures of log importance per predictor). Most important pre-

dictors are those who represent central and extreme locations of the ensemble.
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link between surface temperature and potential wet-bulb

temperature. Because most of the other predictors have

the same importance as noisy predictors, we focus on

FLIR3 and FLVIS3: for the 33-h forecast (day) FLIR3 is

higher than FLVIS3 in importance but this is the contrary

for the 42-h forecast (night). These differences show that

the QRFmodel takes into account diurnal and nocturnal

radiation (in terms of wavelengths). Last but not least, we

note that RR3 and SN3 have small importance: these

predictors are often zero and thus permuting zeros does

not change anything, explaining their small importance.

We can understand this phenomenon when we are

looking at RR3_q90 and SN3_q90. Higher quantiles are

less frequently zero and they have higher importance.

Nevertheless we can keep them in the model since we

remember that random forests do not choose these pre-

dictors during node splitting anyway.

5. Discussion

Through this article, we see that the QRF techniques

and theQRF_M technique, which yields onmultivariable

predictors, give reliable and sharp ensembles compared

to EMOS techniques. Moreover, we have noticed that

the improvement is more consequent for a non-Gaussian

variable like surface wind speed than for surface tem-

perature. This improvement is quite the same among lead

times showing that nonparametric calibration methods

do not lose predictive performance compared to EMOS

and can improve over this method. We also believe that

nonparametric calibration is more useful for forecasters

since output PDF is not constrained by the QRF tech-

nique. It allows us to keep the notion of the scenario for

our calibrated ensembles and it can detect nonlinear

phenomena. It is not just a correction of bias and dis-

persion for a given distribution. This nonparametric

method is a data-driven technique. This may be viewed

as a drawback, but the advent of big data and reforecast

techniques let us think that nonparametric methods will

be frequently used in order to calibrate forecast en-

sembles and more generally for ensemble output sta-

tistics in meteorology. The QRF technique is linked to

the method of analogs (Hamill and Whitaker 2006;

Delle Monache et al. 2013) in the sense that QRF is

another way to find the closest observations given a set

of predictors. Themethod of analogs consists in finding

the closest past forecasts (the analogs) according to a

given metric of the predictors’ space to build an

FIG. 15. Log importance of QRF_M predictors for 33-h forecast of surface temperature. A box plot is composed of measures of log

importance of all the forests and all the stations (so 24 forests 3 87 stations 5 2088 measures of log importance per predictor). Tem-

perature predictors are the most important with the month. Note the high importance of surface irradiation in infrared wavelengths.
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analog-based ensemble. The QRF technique proceeds

by iterative dichotomies on the predictors’ space to

find the closest past forecasts. So both methods share

many advantages (e.g., no parametric assumption,

easily applicable to multipredictor settings, etc.) and

drawbacks (large datasets). Moreover, Delle Monache

et al. (2013) applied the method of analogs for surface

temperature and wind speed on much smaller datasets

(and with only three or four predictors) than in Hamill

andWhitaker (2006) for rainfall: the size of the dataset

is an issue depending on the weather variable under

consideration, it will be interesting to check the perfor-

mances of the analogs technique and QRF with smaller

datasets than in Hamill and Whitaker (2006) for rainfall

but with many more predictors (we remember that our

QRF_M technique uses more than 40 predictors).

In addition, we show that it is always better to have

several methods for assessing performance. Moreover,

we have presented some alternatives to interpret rank

histograms other than in a graphic way, by the use of

entropy in particular.

As a perspective we will apply QRF techniques to

other parameters (rainfall as said above) and try regional

calibration: we could add, for example, predictors like

longitude, latitude, and altitude to make regional QRF

regroup some stations/grid points in order to have fewer

(but bigger) forests and model some spatial interactions.

Some works in the same vein have been published re-

cently for EMOS (Feldmann et al. 2015).Wewill also try

techniques for trajectory recovery in ensemble forecasts

by using the nonparametric technique of ensemble

copula coupling (Bremnes 2007; Krzysztofowicz and

Toth 2008; Schefzik et al. 2013). We are also interested

in combining bias correction for deterministic forecasts to

FIG. 16. Log importance ofQRF_Mpredictors for 42-h forecast of surface temperature.Abox plot is composed ofmeasures of log importance

of all the forests and all the stations (so 24 forests3 87 stations5 2088measures of log-importance per predictor). Temperature predictors are the

most important together with month. Note the high importance of surface irradiation in visible wavelengths for this lead time.

TABLE A1. Lists of predictors for QRF_O.

For surface temperature and surface wind speed

High-resolution member

Control member

Mean of raw ensemble

Median of raw ensemble

First decile of raw ensemble

Ninth decile of raw ensemble

Std dev of raw ensemble

IQR of raw ensemble

Skewness of raw ensemble

Kurtosis of raw ensemble

Month of the year
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the correction of ensemble forecasts. Last but not least, we

could try to use multivariate regression forests (De’Ath

2002) directly to make multivariate calibrated forecasts.
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APPENDIX A

List of Predictors for QRF_O and QRF_M

See Tables A1 and A2 for the list of predictors.

APPENDIX B

List of Theoretical Formulas and Analytic Formulas
for the CRPS for Several Distributions

The continuous ranked probability score (CRPS;

Matheson and Winkler 1976; Hersbach 2000) is defined

directly in terms of the predictive CDF, F, as

CRPS(F, y)5

ð‘
2‘

[F(x)2 1fx$ yg]2 dx .

Another representation (Gneiting and Raftery 2007)

shows that

CRPS(F, y)5E
F
jX2 yj2 1

2
E
F
jX2X 0j ,

where X and X 0 are independent copies of a random

variable with distribution F and finite first moment,

respectively.

Another elegant representation that we found using

the L-moments (Hosking 1989) is

CRPS(F, y)5E
F
jX2 yj2E

F
fX[2F(X)2 1]g .

Here we find some analytic formulas for the CRPS.

Some of them are already known and a reference is

mentioned (to the best of our knowledge) but the others

have been computed. This list permits us to sum up some

formulas for further studies.

a. Normal distribution

For X;N (m, s),

TABLE A2. Lists of predictors for QRF_M.

Surface temperature Both variables Surface wind speed

HRES High-resolution member

CTRL Control member

MEAN Mean of raw ensemble

MED Median of raw ensemble

Q10 First decile of raw ensemble

Q90 Ninth decile of raw ensemble

Month Month of the year

Sigma — Std dev of raw ensemble

IQR — IQR of raw ensemble

Skew — Skewness of raw ensemble

Kurt — Kurtosis of raw ensemble

q10, 50, and 90 are the first decile, the median, and ninth decile, respectively, of the raw ensemble for the following variables:

HU_q10, 50, 90 Surface humidity

P_q10, 50, 90 Sea level pressure

TCC_q10, 50, 90 Total cloud cover

RR3_q10, 50, 90 3-h rainfall amount

SN3_q10, 50, 90 3-h snowfall amount

U10_q10, 50, 90 Surface zonal wind

V10_q10, 50, 90 Surface meridional wind

U500_q10, 50, 90 500-m zonal wind

V500_q10, 50, 90 500-m meridional wind

FF500_q10, 50, 90 500-m wind speed

TPW850_q10, 50, 90 850-hPa potential wet-bulb temperature

FLIR3_q10, 50, 90 3-h total surface irradiation in infrared wavelengths

FLVIS3_q10, 50, 90 3-h total surface irradiation in visible wavelengths

T_q10, 50, 90 — Surface temperature

FF10_q10, 50, 90 Surface wind speed —
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CRPS(X , y)5s

�
v[2F(v)2 1]1 2f(v)2

1ffiffiffiffi
p

p
�
,

where v5 (y2m)/s and f and F are the PDF and the

CDF of the standard normal distribution, respectively.

You can find this formula in Gneiting et al. (2005).

b. Truncated normal distribution

For X;N 0(m, s),

CRPS(X, y)5
s

p2

(
vp[2F(v)1 p2 2]

1 2pf(v)2
1ffiffiffiffi
p

p F

 
m
ffiffiffi
2

p

s

!)
,

where v5 (y2m)/s, p5F(m/s), and f and F are the

PDF and the CDF of the standard normal distribution,

respectively. You can find this formula in

Thorarinsdottir and Gneiting (2010).

c. Square root–transformed truncated normal
distribution

For
ffiffiffiffiffi
X

p
;N 0(m, s),

CRPS(X , y)5 (m2 1s2 2 y)

�
12 2

F(v)2 q

p

�
1 2

f(v)

p
(vs2 1 2sm)2

�
s

p
f
�2m

s

	�2
2 2

sm

p2
ffiffiffiffi
p

p
"
12F

 
2m

ffiffiffi
2

p

s

!#
,

where v5 (
ffiffiffi
y

p
2m)/s, q5 12 p5F(2m/s), and f and

F are the PDF and the CDF of the standard normal

distribution, respectively. Note that this formula is

equivalent to but more convenient than the formula

proposed in Hemri et al. (2014).

d. Lognormal distribution

For X; logN (m, s),

CRPS(X, y)5 2em1(s2/2)

�
12F



sffiffiffi
2

p
�
2F(v2s)

�
1 y[2F(v)2 1],

where v5 [log(y)2m]/s and f and F are the PDF and

the CDF of the standard normal distribution, re-

spectively. You can find this formula in Baran and

Lerch (2015).

e. Gamma distribution

For X;Gamma(p, l),

CRPS(X, y)5
�p
l
2 y
	
[12 2F(y)]1 2

y

l
f(y)2

1

lB


1

2
, p

�,

where B is the beta function and f and F are the PDF

and the CDF of the Gamma(p, l) distribution, re-

spectively. You can find this formula written to another

form in Scheuerer and Möller (2015).

f. Beta distribution

For X;B (p, q),

CRPS(X, y)5
p

p1 q
[12 2F(y;p1 1, q)]

2 y[12 2F(y;p, q)]

2
1

p1 q

G(p1 q)G



p1

1

2

�
G



q1

1

2

�
ffiffiffiffi
p

p
G



p1 q1

1

2

�
G(p)G(q)

where G is the Gamma function andF(; p, q) is the CDF

of the Beta(p, q) distribution.

g. Logistic distribution

For X;Logis (m, s),

CRPS(X, y)5 s[2 log(11 ev)2 12v] ,

where v5 (y2m)/s.

h. Truncated logistic distribution

For X;Logis0(m, s),

CRPS(X, y)5 y2



2p2 1

p

��
m1 s log(11 e2m/s)

p

�
1

s

p
[2 log(11 e2v)2 1],

where v5 (y2m)/s and p5 e2m/s/(11 e2m/s). You can

find this formula written to another form in Scheuerer

and Möller (2015).

i. Log-logistic distribution

For X;Log2Logis(a, b) and b. 1,

CRPS(X, y)

5



b2 1

b2

�
pa

sin(p/b)

1 y

�
12 2

ab

ab 1 yb 2F1



1, 1; 11

1

b
;

yb

ab 1 yb

��
,

where 2F1(a, b; c; z) is the ordinary hypergeometric

function.
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j. Truncated logistic distribution with a point
mass in 0

HereX is a nonnegative random variable whose CDF

is F(x)5 ea1bx/(11 ea1bx),where a is real and b. 0 [the

PDF has a Dirac delta in 0: d(x)F(0)]:

CRPS(X , y)5
1

b

�
2 log(11 ea1by)2 log(11 ea)

2
1

11 ea
2 (a1 by)

�
.

k. Square root–transformed truncated logistic
distribution with a point mass in 0

HereX is a nonnegative random variable whose CDF

is F(x)5 ea1b
ffiffi
x

p
/(11 ea1b

ffiffi
x

p
),where a is real and b. 0

[the PDF has a Dirac delta in 0: d(x)F(0)]:

CRPS(X , y)5
1

b2
[4Li

2
(2ea1b

ffiffi
y

p
)2 2Li

2
(2ea)

2 2log(11 ea)2 2b
ffiffiffi
y

p
log(11 ea1b

ffiffi
y

p
)]

1
a(a1 2)

b2
2 y ,

where Li2(z) is the dilogarithm function. These two last

distributions are extracted from Wilks (2009).

l. Generalized Pareto distribution (GPD) and
generalized extreme value (GEV) distribution

Formulas are quite long for these distributions used

for extreme values. You can refer to Friederichs and

Thorarinsdottir (2012) to get analytic formulas for these

distributions.

m. Von Mises distribution

This distribution is used for circular variables. You can

refer to Grimit et al. (2006) to get the analytic formula.
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