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Abstract

This study proposes an objective methodology to highlight windows of oppor-

tunity in a numerical subseasonal forecasting system. The methodology is

based on a contingency table and is applied to the prediction of heavy tropical

precipitation by the European Centre for Medium-range Weather Forecasts

(ECMWF) subseasonal-to-seasonal (S2S) reforecasts in the November-to-April

season, in relation with the Madden–Julian oscillation (MJO). As a slowly

propagating signal of enhanced convection, the MJO may indicate favorable

conditions for heavy precipitation a few weeks ahead in some tropical areas.

The combined knowledge of these climatological impacts and the current

phase of the MJO at initialization defines observation-based “climatological

windows of opportunity.” We then investigate whether the ECMWF S2S fore-

casts are indeed more performant when there is increased likelihood of heavy

rainfall, that is, whether the model converts “climatological windows of oppor-

tunity” into “model windows of opportunity.” Our results show that, by Week

2, this is only verified for a limited number of tropical areas, mostly located in

the western Pacific and Africa. Meanwhile, failures to seize the opportunities

lie in misplaced MJO impacts, signal loss, or too many false alarms.

KEYWORD S

heavy rainfall events, Madden–Julian oscillation, subseasonal forecasting, subseasonal-to-
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1 | INTRODUCTION

Despite the growing interest for numerical forecasting in
the subseasonal-to-seasonal range (S2S, from 2 weeks to 2
months approximately), the average quality of these fore-
casts is often modest after the first week (e.g., Hudson
et al., 2011; Malloy & Kirtman, 2020). It is increasingly
recommended that applications of S2S and longer climate
predictions should rely on specific conditions, called “win-
dows of opportunity,” when the predictable signal extends

beyond weather timescales (Mariotti et al., 2020). The
concept of “window of opportunity” acknowledges that
skill mostly comes from periods of higher signal-to-noise
ratio, to be identified, for example, through statistical
models (Albers & Newman, 2019; Mayer & Barnes, 2021)
or preexisting information about certain phenomena.

The Madden–Julian oscillation (MJO) is the most
prominent mode of subseasonal climate variability at the
global scale. It consists in the eastward propagation of
zonal wind anomalies and a deep convection center (the
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convective envelope) around the globe in the equatorial
band at the average speed of 5 m�s�1, for a total duration
of 30–90 days (Zhang, 2005). Because the MJO is a slowly
propagating signal, the location of the convective enve-
lope may indicate heavy precipitation in other areas a
few weeks ahead (Lefort & Peyrillé, 2020). Thanks to
these lagged relationships, periods of active MJO are
expected to provide windows of opportunity for S2S pre-
diction, since MJO phases are typically precursors of rain-
fall east of the positive convection anomalies.

Consequently, a wide range of studies have exam-
ined if subseasonal forecasting models performed better
at predicting precipitation under certain MJO initial
conditions. The general framework of these studies is
to make comparisons between the prediction scores
in several sub-samples from a set of reforecasts. A first
approach is to distinguish between forecasts initialized
in active versus inactive MJO conditions (e.g., Marshall
et al., 2011; Specq et al., 2020). A second approach is to
stratify according to the initial MJO phase and consider
the phases coinciding with the most skillful predictions
in the area of interest (e.g., Jones et al., 2011; Vigaud
et al., 2018; Vigaud, Robertson, & Tippett, 2017; Vigaud,
Robertson, Tippett, & Acharya, 2017). Meanwhile, these
approaches have also been applied to assess forecasts
of other variables such as atmospheric rivers (Baggett
et al., 2017), geopotential (Tseng et al., 2018), and the
north atlantic oscillation (Feng et al., 2021). The con-
clusions of these studies may substantially differ
depending on the target variable, the region of interest,
and the numerical model. Moreover, the windows of
opportunity identified from a simple comparison of con-
ditional scores are sometimes difficult to interpret in
light of the propagating MJO signal.

In this study, we propose a two-step objective
method to identify windows of opportunity in a numeri-
cal subseasonal forecasting system. First, we assess
whether an increase in “Base Rate” (i.e., frequency of
occurrence) of heavy rainfall events, 2 or 3 weeks after a
favorable precursor MJO phase, leads to more “hits”
(i.e., correctly detected events) in the S2S forecasts com-
pared to a situation with no MJO signal. Then, we ana-
lyze if periods with more “hits” result in windows of
higher forecast quality, when “false alarms” are also
taken into account.

After a preliminary description of the data and verifi-
cation methodology (Section 2), Section 3.1 describes the
lagged relationships between the MJO and heavy rainfall
at Weeks 2 and 3 across the Tropics. The two-step
method is illustrated in Section 3.2, while Section 3.3
refines the results from Section 3.2 at the regional scale
for a range of selected areas. Finally, a summary of the
main findings can be found in Section 4.

2 | DATA AND METHODS

2.1 | Forecast and observation data

This study uses daily precipitation data in the ensemble
reforecasts provided to the S2S project database (Vitart
et al., 2017) by the European Centre for Medium-range
Weather Forecasts (ECMWF). We use the reforecasts com-
puted on the fly in relation with the real-time forecasts
between November 2, 2020 and April 29, 2021. In doing
so, we cover 20 November–April seasons from 2000–2001
to 2019–2020 with model configuration CY47R11. The
November–April season was chosen as an extended austral
summer season with a peak in MJO activity (Madden,
1986) and impacts (Zhang, 2013). There are 52 start dates
per season (separated by 3 or 4 days) and a total sample of
52 � 20 = 1040 start dates. The ensemble size is 11 mem-
bers. Precipitation is extracted on the 1.5� archiving grid of
the S2S database over the whole tropical band (30�S–
30�N). ECMWF precipitation reforecasts are verified
against daily precipitation data from the Global Precipita-
tion Project Database (GPCP) version 1.3 (Huffman et al.,
2001), which goes from October 1, 1996 onward. GPCP
data were bilinearly interpolated from their original 1� grid
to the 1.5� S2S grid in order to match the reforecast data.

2.2 | Heavy precipitation events

A heavy precipitation event is defined to occur at day
d and grid point g if the average precipitation over the
weekly period [d, d + 6] exceeds the upper quintile (80th
percentile) of the local climatology for the corresponding
calendar week. GPCP reference data and ECMWF
ensemble members are averaged on 7-day moving win-
dows, such that forecasts at d days lead correspond to the
days [d, d + 6] average, while forecasts at d + 1 days cor-
respond to the days [d + 1, d + 7] average. The focus is
particularly laid on Day 12 (average of Days 12–18) and
Day 19 (average of Days 19–25), for which the forecasts
match the usual Week 2 and Week 3 from a common S2S
convention (Coelho et al., 2018; Vigaud et al., 2017).

Seven-day averaged observations and ensemble mem-
ber values are then converted to binary data indicating
whether they exceed the upper quintile threshold com-
puted from their own climatology, and a probabilistic fore-
cast is defined with the fraction of members in which the
event occurs. Forecast and observed climatology are both
determined using a leave-one-year-out cross-validation
(i.e., 20 � 1 = 19 years) following the same approach as
Specq and Batté (2020). The forecast climatology sample
size at a given lead time is therefore 19 years � 11 mem-
bers = 209, while the observed climatology sample size is
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19 years � 3 weeks = 57 (obtained by using 1 week before
and 1 week after, in addition to the corresponding calendar
week). Grid points for which the average observed upper
quintile over the full seasonal cycle does not exceed 7 mm
in a week (1 mm�day�1) are removed from the analysis.

2.3 | Contingency table and verification

The methodology to highlight windows of opportunity
relies on several indicators from a contingency table
(Hogan & Mason, 2012). A schematic example of contin-
gency table is reproduced in Table 1.

• the Base Rate corresponds to the observed frequency of
the event in the sample, and is independent of the
forecast:

Base Rate¼ aþ c
aþbþ cþd

ð1Þ

• the Forecast Rate corresponds to the forecast frequency
of the event in the sample, and is independent of the
observations:

Forecast Rate¼ aþb
aþbþ cþd

ð2Þ

• the Hit Rate is the percentage of correct forecasts know-
ing that the event of interest occurred in observations:

HitRate¼ a
aþ c

ð3Þ

• the False Alarm Rate is the percentage of forecasts
predicting the event although it did not occur in
observations:

False Alarm Rate¼ b
bþd

ð4Þ

• the Peirce Skill Score (PSS) is the difference between
Hit Rate and False Alarm Rate. It summarizes the
overall ability of the forecasting system to predict the

event correctly by representing the trade-off between
hits and false alarms:

Peirce Skill Score¼HitRate�False Alarm Rate ð5Þ

In this study, to compare a probabilistic ensemble fore-
cast to a single binary observation, the counts in the four cat-
egories a, b, c, and d are computed using the probabilistic
contingency table approach introduced by Gold et al. (2020).
Moreover, in order to remove spatial noise when using map
representations (Figures 1–3), the indicators are computed
from a contingency table obtained by pooling 3 � 3 grid
points in a neighborhood around the central grid point.

2.4 | Conditioning on initial MJO phase

The aim is to compute the indicators for sub-samples of
the reforecasts according to specific initial MJO condi-
tions. These initial conditions can be inactive MJO, or
active MJO in phases 8–1, 2–3, 4–5, or 6–7, following the
eight-phase classification from Wheeler and Hendon
(2004). The active MJO phases are grouped by two in
order to increase sample size, in a way which is consis-
tent with well-defined geographical locations of the con-
vective envelope: 2–3 for the Indian Ocean, 4–5 for the
Maritime Continent, 6–7 for the Western Pacific, and 8–1
for the Western Hemisphere and Africa. Inactive MJO
periods correspond to a real-time multivariate MJO
amplitude (see Wheeler & Hendon, 2004) less than 1. For
each reforecast start date, the initial MJO phase is the
MJO phase at Day 1 provided by the Australian Bureau
of Meteorology at http://www.bom.gov.au/climate/mjo/
graphics/rmm.74toRealtime.txt.

Once the ensemble forecasts are stratified according
to their initial MJO condition, the metrics from the con-
tingency tables (Section 2.3) are computed for each sub-
sample. The aim is to compare the metrics between ini-
tially active MJO in any of the four phases (8–1, 2–3, 4–5,
6–7) and initially inactive MJO. The sub-sample sizes are
given in Table S1. To assess the significance of differ-
ences, we use the 90% confidence interval of the metrics.
If the value for the inactive MJO sample does not lie
within the confidence interval of the phase-specific MJO
sample, the difference is deemed significant.

The 90% confidence intervals are estimated with a
bootstrap procedure by resampling the corresponding
start dates 1000 times with replacement. Taking the
example of the Hit Rate of forecasts initialized in MJO
phases 8–1 (sample size 132), 1000 resamplings of the
132 forecasts are verified against their corresponding
observations: the confidence interval lies between the 5th
and 95th percentiles of the bootstrapped Hit Rate values.

TABLE 1 Generic example of a 2 � 2 contingency table with

the corresponding terms

Event observed/not observed

Yes No

Forecast Yes Hits (a) False alarms (b)

No Misses (c) Correct rejections (d)
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3 | RESULTS

3.1 | Climatological windows
of opportunity

It is widely documented that the MJO increases tropical
rainfall where the convective envelope is located
(e.g., Zhang, 2013). This is verified for mean precipita-
tion, but also for the upper tail of the distribution with an
increase in the frequency of extremes. The left column of
Figure 1 illustrates the locations where a significant
increase in the Base Rate of the upper quintile of weekly
precipitation can be observed in GPCP data, simulta-
neous to the MJO phases indicated on the left and com-
pared to inactive MJO. The propagating signal is clearly
visible, and is in good agreement with the MJO-induced
precipitation anomalies such as those described by Zhang
(2013) (Figure 1).

The middle and right column show a similar analy-
sis when considering the weekly GPCP observations,
respectively, 12 and 19 days after the ECMWF
reforecast start dates. The first key point is the gradual
decrease in the extent of the areas experiencing a
higher frequency of heavy precipitation. This highlights
the natural limits of the MJO as a precursor for heavy
rainfall: the MJO is not a perfectly regular wave and it
often returns to an inactive state before completing its
circumglobal propagation. The second key point is the
eastward shift of the areas where the Base Rate
increases, compared to the leftmost figures. This is in
agreement with the expected displacement of the con-
vective envelope.

The lagged relationships between the MJO and heavy
rainfall—illustrated in the middle and right columns of
Figure 1—indicate “climatological windows of opportu-
nity”: by relying only on the past observational record, a
forecaster is able to know that heavy rainfall will be more
likely at day d + 2 or 3 weeks considering the observed
state of the MJO at day d.

3.2 | Model windows of opportunity

The question that arises when climatological windows of
opportunity are identified is whether the S2S prediction
system benefits from them by issuing more performant
forecasts, thus defining “model windows of opportunity.”
The first element to investigate is the improved detection
of the events that occur in agreement with an increased
climatological probability (e.g., a favorable precursor
MJO phase), compared to those occurring in the absence
of signal (e.g., an inactive MJO period).

This is examined with the first two columns of
Figure 2, by comparing the increase in Base Rate and
Hit Rate for Week-2 lead time (Week 3 is shown in
Figure S1). Most of the time, the areas with a higher
Hit Rate are included within areas where the Base Rate
is also higher, such as East Africa after phases 8–1 and
6–7, the central Pacific Ocean after phases 2–3, and the
southwest tropical Pacific after phases 4–5. Nonetheless,
we note a slight reduction in the extent of significant
areas between Base Rate and Hit Rate, for instance over
the Indian Ocean in phases 8–1 and over the Maritime
Continent in phases 2–3. In these locations, the

FIGURE 1 Base rate anomalies of the upper quintile of weekly precipitation for the four active MJO phases, relative to inactive MJO.

Only significantly positive anomalies (based on bootstrapping) are shown, while non-significant or negative anomalies are left blank. Left

column: Base rate simultaneous to the MJO phase. Middle and right column: Base rate, respectively, 12 days (lead time Week 2) and 19 days

(lead time Week 3) after the MJO phase. Grid points in dry areas removed from the study (upper quintile <1 mm�day�1) are in gray

4 of 9 SPECQ AND BATT�E



expected improvement of heavy precipitation detection
does not appear anymore in the ECMWF S2S forecasts
as early as Week 2.

The simultaneous increase in Base Rate and Hit Rate
can be considered as a “Type 1 model window of

opportunity,” showing that the forecasting system is able
to tap into predictable subseasonal signals. Yet, it might
not be enough to identify fully actionable forecasts if
more hits are associated with too many false alarms. This
is why higher overall forecast quality is also explored

FIGURE 3 Combined significantly positive anomalies in contingency table indicators for the four active MJO phases, relative to inactive

MJO. Left: 12 days (lead time Week 2) after MJO phase, summarizing Figure 2. Right: 19 days (lead time Week 3) after MJO phase,

summarizing Figure S1. Orange areas exhibit a significant increase in Base Rate and Hit Rate only, brown areas a significant increase in

Base Rate, Hit Rate and PSS, whereas yellow areas exhibit a significant increase in Hit Rate and PSS only. Grid points in dry areas removed

from the study (upper quintile <1 mm�day�1) are in gray. Black boxes indicate regions chosen for Figure 4

FIGURE 2 Anomalies of Base Rate (left), Hit Rate (middle) and PSS (right) of the upper quintile of weekly precipitation 12 days (lead

time Week 2) after one of the four active MJO phases, relative to inactive MJO. Only significantly positive anomalies (based on

bootstrapping) are shown, while non-significant or negative anomalies are left blank. Grid points in dry areas removed from the study

(upper quintile <1 mm�day�1) are in gray
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with the PSS (Figure 2, third column). It clearly appears
that a lot of grid points with a significant increase in Hit
Rate do not show a significant increase in PSS. This is
particularly true for Africa and the Indian Ocean, in
phases 8–1 or 6–7. It can be assumed that in such cases,
the forecasts take into account the MJO signal but tend
to overpredict heavy precipitation when conditions are
favorable. As a whole, the results for PSS are rather dis-
appointing: by Week 2 there are very few large and con-
sistent areas where PSS is enhanced, and most grid
points with significant PSS improvement are located in
the ocean with no inhabited land.

In order to summarize Figures 2 and S1, Figure 3 clas-
sifies the grid points according to the relationships
between climatological and model windows of opportu-
nity for each MJO phase, at Day 12 and Day 19. Three
categories of grid points are identified:

• Grid points with a Type 1 model window of opportu-
nity (in orange): a significant increase in Base Rate
leads to a significant increase in Hit Rate but no signif-
icant increase in PSS on account of an excessive False
Alarm Rate.

• Grid points with a Type 2 model window of opportu-
nity (in brown): a significant increase in Base Rate
leads to a significant increase in both Hit Rate
and PSS.

• Grid points with a significant increase in both Hit Rate
and PSS that cannot be explained by a significant
increase in Base Rate (in yellow).

A general result from Figure 3 is that the largest areas of
significant Hit Rate increase from Figures 2 and S1 are
compounds of core regions experiencing Type 2 opportu-
nities in brown, surrounded or connected by grid points
experiencing Type 1 opportunities (with too many false
alarms) in orange. “Yellow” areas are either isolated or
located at the edge of the Type 1 and Type 2 regions.
They often reveal the misplacement or shifting of the
MJO impacts in the forecasts.

3.3 | Regional scale analysis

The aim of this section is to illustrate how the analysis of
Figures 2 and 3 can be refined at the local scale, which is

FIGURE 4 Day-by-day evolution of the five contingency table indicators (Base Rate, Forecast Rate, Hit Rate, False Alarm Rate and PSS)

of the upper quintile of weekly precipitation in the 7 selected regions indicated by rectangles on Figure 3. The evolution is shown for

forecasts initialized with a specific MJO phase (colored curve, see title for phase number), for forecasts initialized in inactive MJO conditions

(black curve) and for all forecasts (gray curve). Significant differences between the active phase (color) and inactive MJO (black) are shown

in full bold line. The gray dotted vertical lines indicate Week 2 and Week 3 lead times
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essential for potential applications. From Figure 3, we select
seven inhabited areas across the tropical band (black rect-
angles) so as to sample different categories of positions
along the MJO track. They are all encompassed in 12-grid-
point boxes so that the contingency tables are computed on
the same sample size for all areas. From west to east, we
name these areas according to the main islands, countries,
or territories they encompass: Uganda (UG), Comoros
(COM), Java (JAVA, Indonesia), Darwin (DWN, Australia),
New Caledonia (NC), Samoa (SAM), and Northeast Brazil
(NEB). Their coordinates are given in Table S2.

Figure 4 shows how the five metrics from Section 2.3
evolve with lead time in each of these zones, for a sub-
sample of forecasts initialized with a specific MJO phase.
It also shows the comparison with forecasts initialized
when the MJO is inactive, and with the whole set of
reforecasts. For the sake of brevity, only one MJO phase
was chosen for each zone on the basis of Figure 3. If the
metric for the specific MJO phase (in color) is significantly

different from inactive MJO (in black), the curve appears
as a full bold line. Note that because the weekly windows
for two consecutive daily lead times overlap by 6 days, we
consider the windows of opportunity are robust when
they last for at least 7 consecutive days.

Compared to the “snapshots” provided by Figures 2
and 3, Figure 4 illustrates the whole extent of the win-
dows of opportunity on the full range of forecast times.
Furthermore, it provides finer information about:

• the representation of the MJO impacts by the model
(comparison between Base Rate and Forecast Rate)

• the correspondence between climatological and fore-
cast windows of opportunity (comparison between
Base Rate, Hit Rate, and PSS)

• the contribution of Hit Rate and False Alarm Rate to
the PSS, for example, how a Type 1 model window of
opportunity in Hit Rate is undermined by a high False
Alarm Rate

FIGURE 4 (Continued)
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In Figure 4, we observe a similar behavior for Uganda
following phases 6–7 (Figure 4a), Comoros following
phases 8–1 (Figure 4b), and Darwin following phases 2–3
(Figure 4d). There is a peak in the occurrence (Base Rate)
of weekly precipitation in the upper quintile between
2 and 3 weeks after the given phase. Such an increase is
reproduced, although weakly, by the ECMWF reforecasts
(Forecast Rate). As a result, the increase in Base Rate
translates into a model window of opportunity at Weeks
2 and 3 for the Hit Rate. However, the False Alarm Rate
tends to evolve in close relationship with the Forecast
Rate and this compensates the increase in Hit Rate, such
that there is no significant improvement of the PSS, apart
from a few days around Week 2. Consequently, the
opportunity in Hit Rate fails to convert into an opportu-
nity in skill: it is only a Type 1 opportunity as illustrated
by the orange points in Figure 3.

On the contrary, Samoa (Figure 4f), which shows the
same type of Base Rate peak at Weeks 2 and 3 after MJO
phases 4–5, undoubtedly exhibits a Type 2 opportunity
with a robust peak in Hit Rate and PSS around Week 2,
thanks to a False Alarm Rate that is no higher than aver-
age. A similar conclusion can be drawn in the Northeast
Brazil region (Figure 4g) between Day 5 and Day 15 after
MJO phases 8–1.

Finally, Java (Figure 4c) and New Caledonia (Figure 4e)
are “yellow” areas where the increase in Hit Rate and/or
PSS is not related to an increase in Base Rate (around
3 weeks after phases 2–3 for Java, between 2 and 3 weeks
after phases 4–5 for New Caledonia). This is particularly
striking for New Caledonia, for which the improved perfor-
mances actually coincide with a significant decrease in the
probability of heavy precipitation. It means that some rarer
events are more easily detected than average by the
ECMWF forecasts. The interpretation is that the forecasts
tend to unduly predict more intense precipitation than
observed, as suggested by the comparison between the Base
Rate and the Forecast Rate curves.

It should be stressed that Figure 4 highlights signifi-
cant model windows of opportunity thanks to the large
start date sub-samples. However, it must also be
acknowledged that the maximum improvement of Hit
Rate or PSS is small (around 0.1), and that their values
remain modest in the subseasonal range regardless of the
MJO initial conditions.

4 | SUMMARY AND CONCLUSION

This study proposes a very simple approach to identify
windows of opportunity in a subseasonal forecasting
system, when specific precursor conditions suggest that
an event is more likely to occur according to the

observational record. The approach relies on a contin-
gency table analysis (Hogan & Mason, 2012). A first
step looks for the coincidence between a lagged
increase in the event frequency (Base Rate) and an
improvement of the Hit Rate. A second step uses the
decomposition of the PSS between Hit Rate and False
Alarm Rate, to see if the improvement in Hit Rate con-
verts into an overall improvement of forecast skill when
false alarms are also taken into account. These two
steps determine if a climatological window of opportu-
nity translates into a model window of opportunity of
Type 1 or Type 2. Although Type 2 (improved PSS) is
preferable, it is also worth highlighting Type
1 (improved Hit Rate only), as it may already prove
valuable to users that are more sensitive to hits than
false alarms (e.g., when the forecast event is very rare).

In this article, the method is applied to the state of
the MJO at forecast initialization and relies on one-to-
one comparisons between an active phase and the
inactive phase. It is implemented on 20 years of
ECMWF reforecasts from the S2S database in the
November–April season. It shows that, by Week
2, favorable precursor MJO conditions do reflect in
the Hit Rate over the western Pacific and Africa,
while they do not over the Indian ocean and the Mar-
itime Continent. This illustrates the ability of the
ECMWF system to anticipate heavy tropical rainfall in
the former regions. Unfortunately, the improvements
in Hit Rate often coincide with an increase in False
Alarm Rate, showing the tendency of the system to
overforecast heavy precipitation related to lagged MJO
impacts. Finally, the approach also highlights
enhanced model performances that do not match an
increase in Base Rate (Figure 3, yellow grid points):
they are most likely related to “lucky hits” in areas
where the model predicts an increased frequency of
the event while there is none.

The same contingency table approach can be used to
diagnose the ability of S2S systems to benefit from any
climatological window of opportunity. For instance,
another illustration is shown in Appendix S1 with the
forecast of weekly precipitation below the lower quintile,
in relation with the MJO suppressed convection (Figures
S2–S4). Beyond the MJO, the method could also be
applied to other phenomena that precede extreme events
(e.g., Sudden Stratospheric Warmings that can lead to
mid-latitude cold waves, Domeisen & Butler, 2020), as
long as the forecast sub-sample with the corresponding
precursor is large enough.
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