
�>���G �A�/�, �K�2�i�2�Q�@�y�j�e�8�d�N�R�k

�?�i�i�T�b�,�f�f�?���H�@�K�2�i�2�Q�7�`���M�+�2�X���`�+�?�B�p�2�b�@�Q�m�p�2�`�i�2�b�X�7�`�f�K�2�i�2�Q�@�y�j�e�8�d�N�R�k

�a�m�#�K�B�i�i�2�/ �Q�M �j �J���v �k�y�k�k

�>���G �B�b �� �K�m�H�i�B�@�/�B�b�+�B�T�H�B�M���`�v �Q�T�2�M ���+�+�2�b�b
���`�+�?�B�p�2 �7�Q�` �i�?�2 �/�2�T�Q�b�B�i ���M�/ �/�B�b�b�2�K�B�M���i�B�Q�M �Q�7 �b�+�B�@
�2�M�i�B�}�+ �`�2�b�2���`�+�? �/�Q�+�m�K�2�M�i�b�- �r�?�2�i�?�2�` �i�?�2�v ���`�2 �T�m�#�@
�H�B�b�?�2�/ �Q�` �M�Q�i�X �h�?�2 �/�Q�+�m�K�2�M�i�b �K���v �+�Q�K�2 �7�`�Q�K
�i�2���+�?�B�M�; ���M�/ �`�2�b�2���`�+�? �B�M�b�i�B�i�m�i�B�Q�M�b �B�M �6�`���M�+�2 �Q�`
���#�`�Q���/�- �Q�` �7�`�Q�K �T�m�#�H�B�+ �Q�` �T�`�B�p���i�2 �`�2�b�2���`�+�? �+�2�M�i�2�`�b�X

�G�ö���`�+�?�B�p�2 �Q�m�p�2�`�i�2 �T�H�m�`�B�/�B�b�+�B�T�H�B�M���B�`�2�>���G�- �2�b�i
�/�2�b�i�B�M�û�2 ���m �/�û�T�¬�i �2�i �¨ �H�� �/�B�z�m�b�B�Q�M �/�2 �/�Q�+�m�K�2�M�i�b
�b�+�B�2�M�i�B�}�[�m�2�b �/�2 �M�B�p�2���m �`�2�+�?�2�`�+�?�2�- �T�m�#�H�B�û�b �Q�m �M�Q�M�-
�û�K���M���M�i �/�2�b �û�i���#�H�B�b�b�2�K�2�M�i�b �/�ö�2�M�b�2�B�;�M�2�K�2�M�i �2�i �/�2
�`�2�+�?�2�`�+�?�2 �7�`���M�Ï���B�b �Q�m �û�i�`���M�;�2�`�b�- �/�2�b �H���#�Q�`���i�Q�B�`�2�b
�T�m�#�H�B�+�b �Q�m �T�`�B�p�û�b�X

�.�B�b�i�`�B�#�m�i�2�/ �m�M�/�2�` �� �*�`�2���i�B�p�2 �*�Q�K�K�Q�M�b���i�i�`�B�#�m�i�B�Q�M�% �9�X�y �A�M�i�2�`�M���i�B�Q�M���H �G�B�+�2�M�b�2

�� �R�.�@�o���` ���T�T�`�Q���+�? �i�Q �_�2�i�`�B�2�p�2 �*�H�2���`�@�a�F�v �q�2�i
�h�`�Q�T�Q�b�T�?�2�`�B�+ �*�Q�`�`�2�+�i�B�Q�M �7�`�Q�K �*�m�`�`�2�M�i ���M�/ �6�m�i�m�`�2

���H�i�B�K�2�i�`�v �J�B�b�b�B�Q�M�b
�G���m�`�� �>�2�`�K�Q�x�Q�- �G���m�`�2�M�+�2 �1�v�K���`�/�- �6���i�B�K�� �E���`�#�Q�m�- �"�`�m�M�Q �S�B�+���`�/�- �J�B�+�F���2�H

�S���`�/�û

�h�Q �+�B�i�2 �i�?�B�b �p�2�`�b�B�Q�M�,

�G���m�`�� �>�2�`�K�Q�x�Q�- �G���m�`�2�M�+�2 �1�v�K���`�/�- �6���i�B�K�� �E���`�#�Q�m�- �"�`�m�M�Q �S�B�+���`�/�- �J�B�+�F���2�H �S���`�/�û�X �� �R�.�@�o���` ���T�@
�T�`�Q���+�? �i�Q �_�2�i�`�B�2�p�2 �*�H�2���`�@�a�F�v �q�2�i �h�`�Q�T�Q�b�T�?�2�`�B�+ �*�Q�`�`�2�+�i�B�Q�M �7�`�Q�K �*�m�`�`�2�M�i ���M�/ �6�m�i�m�`�2 ���H�i�B�K�2�i�`�v �J�B�b�@
�b�B�Q�M�b�X �C�Q�m�`�M���H �Q�7 ���i�K�Q�b�T�?�2�`�B�+ ���M�/ �P�+�2���M�B�+ �h�2�+�?�M�Q�H�Q�;�v�- ���K�2�`�B�+���M �J�2�i�2�Q�`�Q�H�Q�;�B�+���H �a�Q�+�B�2�i�v�- �k�y�R�N�- �j�e
�U�j�V�- �T�T�X�9�d�j�@�9�3�N�X ���R�y�X�R�R�d�8�f�C�h�1�*�>�@�.�@�R�d�@�y�R�j�j�X�R���X ���K�2�i�2�Q�@�y�j�e�8�d�N�R�k��

https://hal-meteofrance.archives-ouvertes.fr/meteo-03657912
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


A 1D-Var Approach to Retrieve Clear-Sky Wet Tropospheric
Correction from Current and Future Altimetry Missions

LAURA HERMOZO , LAURENCE EYMARD ,a FATIMA KARBOU ,b BRUNO PICARD ,
AND MICKAEL PARD É

Collecte Localisation Satellite, Ramonville-Saint-Agne, France

(Manuscript received 4 August 2017, in Þnal form 14 December 2018)

ABSTRACT

Statistical methods are usually used to provide estimations of the wet tropospheric correction (WTC),
necessary to correct altimetry measurements for atmospheric path delays, using brightness temperatures
measured at two or three low frequencies from a passive microwave radiometer on board the altimeter
mission. Despite their overall accuracy over oceanic surfaces, uncertainties still remain in speciÞc regions of
complex atmospheric stratiÞcation. Thus, there is still a need to improve the methods currently used by taking
into account the frequency-dependent information content of the observations and the atmospheric and
surface variations in the surroundings of the observations. In this article we focus on the assimilation of
relevant passive microwave observations to retrieve the WTC over ocean using different altimeter mission
contexts (current and future, providing brightness temperature measurements at higher frequencies in ad-
dition to classical low frequencies). Data assimilation is performed using a one-dimensional variational data
assimilation (1D-Var) method. The behavior of the 1D-Var is evaluated by verifying its physical consistency
when using pseudo- and real observations. Several observing-system simulation experiments are run and their
results are analyzed to evaluate global and regional WTC retrievals. Comparisons of 1D-Var-based TWC
retrieval and reference products from classical WTC retrieval algorithms or radio-occultation data are also
performed to assess the 1D-Var performances.

1. Introduction

Altimeter satellite mission data are widely used to
monitor sea level and are necessary for understanding the
impact of climate change on mean sea level. Since altim-
eters measure the altitude of the satellite above EarthÕs
surface, retrieving sea level from these measurements
requires data processing including instrument/platform
corrections, accurate orbit determination, as well as ac-
counting for atmospheric delay and surface effects. With
such considerations, global and regional mean sea level
(MSL) error budget from 1993 to 2012 range under 0.5
and 3 mm yr2 1, respectivelyAblain et al. (2012).

The atmospheric propagation delay is mainly caused
by water vapor in the lower-tropospheric layers and dry

gases in the atmosphere. The propagation delays are
named the wet tropospheric correction (WTC) and dry
tropospheric correction (DTC). While WTC contributes
to only 10% to the total atmospheric propagation delay,
it contributes to 50% of the global mean sea level error
budget (Ablain et al. 2009; Obligis et al. 2010). It is thus
one of the main corrections of the altimetric signal.
WTC is proportional to the total column water vapor; it
ranges between 0 and 50 cm and is highly variable in
time and space. Areas of strong evaporation are asso-
ciated with rather large and variable WTC (Brown 2010;
Ablain et al. 2012) and its uncertainty reaches 0.746
0.15 cm (Brown et al. 2004).

WTC is generally derived from brightness temperature
(TB) measurements from a nadir-viewing radiometer on
board an altimeter mission at two or three dedicated fre-
quencies, one of them being located around the 22.235GHz
water vapor absorption line. WTC retrieval algorithms
are mostly based on a regression approach making use of
a database built with atmosphere state analysis from
numerical weather prediction (NWP) model, or with
radiosondes and other ground measurements. In these
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approaches, radiative transfer model simulations provide
TB estimates, to be related with the integrated WTC.
Following this approach, a multilinear regression algo-
rithm was used byKeihm et al. (1995) to retrieve WTC,
with 1.2-cm overall accuracy, using TOPEX/Poseidon
Microwave Radiometer (TMR) measurements for sev-
eral wind speed and cloud liquid conditions. A similar
algorithm was applied by Eymard et al. (1996) to use
the European Space Agency (ESA) European Remote-
Sensing Satellite-1and -2 (ERS-1 and ERS-2, respec-
tively) missions, radiometer measurements for WTC
estimates.Brown et al. (2004) also used a statistical ap-
proach to retrieve WTC from the Jason Microwave
Radiometer (JMR). Obligis et al. (2006) used a neural
network algorithm for the inversion of the Envisat mi-
crowave radiometer measurements to estimate WTC.
Picard et al. (2015)used the same approach in the context
of the Satellite with Argos and Altika (SARAL ) mission.

These algorithms provide WTC estimates with good
accuracy over open seas. However, systematic errors
may occur at regional scales, where atmospheric char-
acteristics are not well represented in the learning da-
tabase. These errors are propagated into the Þnal sea
level maps derived from altimeter data, leading to local
biases. To address this issue,Obligis et al. (2009) used
additional geophysical variables as inputs to the neural
network algorithm (sea surface temperature and tem-
perature lapse rate between surface and 800 hPa),
leading to better regional performances of the retrieved
WTC. As for coastal measurements, both the ocean and
land surfaces contribute to the signal due to the broad
measurement footprint. Such land contamination in
measurements is also a source of degradation of WTC
retrievals, and is caused by the large difference between
land and sea TB measurements (land surface emissivity
is almost 2Ð3 times greater than sea surface emissivity).
Several methods were tested to address this speciÞc issue.
Most of them are based upon the use of TB corrections
to account for the land signal within the measurement
footprint ( Ruf and Giampaolo 1998; Bennartz 1999;
Desportes et al. 2007; Brown 2010). Other methods to
update and improve the WTC in the coastal areas were
also developed combining TB measurements, atmo-
spheric model variables, and WTC derived from Global
Navigation Satellite System (GNSS) data (Obligis et al.
2011). Although these methods show promising results
and have a high potential to reduce estimated WTC errors
over coastal areas or under various atmospheric condi-
tions, they remain region/instrument dependent because
they are dedicated to measurements from a given radi-
ometer or because they are valid over speciÞc regions. As
an alternative, physically based methods could provide a
global WTC retrieval method valid over various surfaces

including oceanic and coastal areas, using observations
from different sensors.

Previous studies have already shown the potential of
variational methods such as one-dimensional variational
data assimilation (1D-Var) approaches to retrieve tem-
perature, humidity, and cloud vertical proÞles. Over
ocean, SSMIS measurements were assimilated under clear
and cloudy nonprecipitating conditions by Deblonde and
English (2003) to retrieve temperature and humidity
proÞles as well as liquid water content.Liu and Weng
(2005) have shown the potential of assimilating different
sets of observations from AMSU-A and AMSU-B in-
struments to retrieve and better constrain temperature,
humidity, cloud, rain, and ice water proÞles. Hewison
(2007)assimilated ground-based microwave observations
as well as other IR and surface sensor measurements in a
1D-Var scheme to retrieve temperature, humidity, and
cloud proÞles using a speciÞc cloud classiÞcation scheme.

The 1D-Var approach was also found beneÞcial to
estimate integrated and surface parameters, derived
from retrieved atmospheric proÞles and surface pa-
rameters. To address the issue of uncertainties in the
estimated WTC over coastal areas,Desportes et al.
(2010) showed the feasibility of using a 1D-Var ap-
proach to retrieve WTC over coastal areas by assimi-
lating pseudomeasurements, simulated from a radiative
transfer model to Þt Envisat radiometer characteristics.
Boukabara et al. (2011) has also developed a ÔÔmulti-
surfaceÕÕ 1D-Var-based retrieval method. In the latter
study, the authors perform the inversion of passive mi-
crowave observations from various instruments over
ocean, land, and sea ice surfaces and for all-sky condi-
tions to estimate derived surface or integrated products
from retrievals such as sea ice concentration, rainfall
rate, and cloud liquid water content among others. Note
also the study conducted byBennartz et al. (2017) to
retrieve total column water vapor and WTC over ocean
using measurements from the Microwave Radiometers
(MWRs) onboard the ERS-1and ERS-2and theEnvisat
missions.

The latter studies demonstrate the potential of the
1D-Var approach as a relevant global method to retrieve
WTC over several surfaces. Nevertheless, improve-
ments are still required to fully exploit the beneÞts of the
1D-Var capabilities. For instance, the antenna pattern of
each observation is not taken into account in the back-
ground information, while it provides information on the
atmospheric variability around each measurement. Even
though the impact is relatively low on retrieved WTC
over ocean, it can be signiÞcant over coastal areas, where
atmospheric and surface variabilities are rather large.
High-frequency measurements (greater than 89 GHz) are
associated with a relatively high horizontal resolution and
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with a sensitivity to atmospheric conditions and could be
very useful to constrain WTC if assimilated in a 1D-Var
approach. These issues should be addressed in the context
of future altimeter missions, aiming to deliver a map of
the topography at a higher temporal rate and smaller
spatial scales, with reduced errors over various oceanic
and heterogeneous surfaces.

In this study, the 1D-Var approach is used to retrieve
WTC over global ocean, with a view to extend its use over
coastal areas in the near future. Different experiments are
performed over ocean to validate the 1D-Var method and
to assess its performance in terms of retrieved humidity
and estimated WTC. A main improvement of this study as
compared to the previous ones is that the frequency-
dependent measurement resolution is taken into account
while being assimilated in the 1D-Var scheme. Thus, the
contribution of each collocated model grid cell within the
measurement footprint is accounted for in the atmo-
spheric and surface background information.

This paper is organized as follows. Data and models are
described in section 2. A Þrst evaluation of the 1D-Var
using simulated observations is presented insection 3. In
section 4 we evaluate the performances of the 1D-Var
using real data. Comparisons between retrieved and ref-
erence WTC estimations are performed. Conclusions are
given in section 5.

Note that a preliminary version of this article was
copied in the Ph.D. manuscript describing the use of a
1D-Var approach for wet tropospheric correction esti-
mation in the frame of altimetry missions, written by the
same author.

2. Data and methods

a. Microwave radiometer datasets

In this study, we use measurements from the Ad-
vanced Microwave Radiometer (AMR) onboard the
NASA/CNES Jason-2 Ocean Surface Topography
Mission (OSTM). Dedicated to WTC estimations over
ocean, the AMR provides measurements at three frequen-
cies: 18.7, 23.8, and 34GHz. Measurements at the 18.7-GHz
channel are mainly sensitive to ocean surface variations due
to wind. Located near the 22.235-GHz water vapor ab-
sorption band, the 23.8-GHz channel is sensitive to water
vapor in the lower part of the atmosphere whereas the
34-GHz channel is the most sensitive to clouds. AMR
measurements are performed with a horizontal resolution
ranging from 40- to 20-km main beam 3-dB width, from the
lowest to the highest frequency, respectively.

Frequencies and horizontal resolutions from the
AMR radiometer are given in Table 1. In addition to
microwave observations, we use atmosphere and surface

Þelds from analyses/forecasts from the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF)
NWP model (ECMWF 2012). We use Þelds of air tem-
perature, and speciÞc humidity proÞles at 137 pressure
levels with a grid resolution of 0.258 3 0.258, as well as
Þelds of 2-m temperature, 2-m dewpoint temperature,
surface pressure, surface skin temperature, and 2-m
zonal and meridional wind speeds. These Þelds were
taken daily, at the four synoptic hours of 0000, 0600,
1200, and 1800 UTC, for the month June 2015.

b. The 1D-Var approach

In this study we use the stand-alone 1D-Var scheme
provided by the EUMETSAT Numerical Weather Pre-
diction Satellite Applicatio n Facility (NWPSAF), available
online [www.metofÞce.gov.uk/research/interproj/nwpsaf
(version 1.0)]. The 1D-Var system is based on linear op-
timal estimation to provide the best estimation of the
atmosphere state vector x, which optimally combines
observation vector y and a background statexb coming
from short-range forecasts. An observation operatorH is
used to link the observation vector to the atmospheric
state. This operator includes several interpolations from
observation space to model space and radiative transfer
simulations. We use the Radiative Transfer for the Tele-
vision and Infrared Observation Satellite (TIROS) Oper-
ational Vertical Sounder (RTTOV), version 11.2 ( Eyre
1991; Saunders et al. 1999; Matricardi et al. 2004).

The best estimation of the atmosphere state is ob-
tained by minimizing the cost function:

J(x) 5
1
2

[(x 2 xb)TB2 1(x 2 xb)]

1
1
2

f [H(x) 2 yo]TR2 1[H(x) 2 yo]g . (1)

TABLE 1. AMSU-A, MHS, and AMR channels and horizontal
resolutions

Channel Frequency (GHz)
Resolution at nadir

(3-dB beamwidth) (km)

AMR
1 18.7 40
2 23.8 20
3 34 20

AMSU-A
1 23.8 48
2 31.4 48
3 50.3 48
4 53.6 48

MHS
1 89 17
2 157 17
5 190 17
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where R and B are the observation and background
error covariance matrix, respectively. Superscript 2 1
indicates the matrix inverse and T its transpose.

The cost function from Eq. (1) is solved iteratively
using the LevenbergÐMarquardt technique. More in-
formation on the mathematical method and the con-
vergence criteria used in the 1D-Var minimization
scheme can be found inPress et al. (1988). Similar to
Deblonde and English (2003), the state variables of the
1D-Var are air temperature, speciÞc humidity, surface
pressure, surface humidity, 2-m temperature, skin tem-
perature, and zonal and meridional 10-m wind speeds.
An exception is made for cloud liquid water, which is not
included in the 1D-Var state variables, here, as only
clear-sky measurements are assimilated. The latter state
variables all contribute to the estimation of WTC.

WTC is then estimated from the retrieved tempera-
ture and humidity proÞles using the following equation:

WTC 5
k
g

ðTOA

surface

q(p)
t( p)

dp, (2)

where k is a constant,g is the gravitational constant,p is
the pressure, andq(p) and t(p) are the speciÞc humidity
and temperature at a given pressure levelp, respec-
tively. For an optimal assimilation, observation and
background error covariance matrices should be ap-
propriately deÞned. The background error covariance
matrix is adapted from that of the NWPSAF 1D-Var
package and is modiÞed in order to constraint humidity
in the upper levels of the atmosphere and relax con-
straints in the lower levels. More information on this
modiÞcation can be found in theappendix.

Observation errors are deÞned assuming no correla-
tions between measurements at different frequencies.
Observation errors for each considered channel have
been estimated using 1 month of data by examining
statistics of the difference between observations and
simulations (noted TBdiff) following the method used in
Deblonde (2001). Values of the diagonal coefÞcients of
the observation error covariance matrix are then in-
ferred from standard deviations of TBdiff weighted by a
factor a, between 0 and 1. Several values ofa have been
tested and the chosen observation errors are listed in
Table 2 for each assimilated observation in the 1D-Var.

3. Evaluation of the 1D-Var retrievals using
simulated data

PseudoÐbrightness temperature observations (pseudo-
TB) are calculated using the radiative transfer model
RTTOV fed by analyses from ECMWF (proÞles of
clear-sky temperature and speciÞc humidity, and surface

parameters over open seas). Ocean surface emissivity is
estimated by the Fast Emissivity Model (FASTEM),
version 5.0 (Deblonde and English 2000; Bormann et al.
2012), using model surface skin temperature and wind. To
simulate current operational instruments, simulations are
computed over the AMR passes, during 1 month in June
2015. Two sets of instruments are simulated: a Þrst one
called the ÔÔlow frequencyÕÕ conÞguration (noted LF)
consists of simulating measurements at the AMR fre-
quencies 18.7, 23.8, and 34GHz; and the second one
called the ÔÔhigh frequencyÕÕ conÞguration (noted HF)
for which measurements are simulated at 53.6, 89, 157,
and 190GHz (AMSU-A and MHS-like instruments). As
stated earlier, 53.6GHz is a temperature sounding chan-
nel; the other channels are sensitive to the surface and to
the air moisture near the surface. The 53.6- and 190-GHz
channels can also be used for cloud screening. A Gaussian
white noise of 0.5-K standard deviation is added to pseudo-
TBs to simulate actual instrumental noise.

These ÔÔpseudo-observationsÕÕ are then assimilated in
the 1D-Var scheme, which is fed by 24-h forecasts from
ECMWF (atmospheric proÞles and surface parame-
ters). The main advantage of this is that we know the
target solution (the reference state of the atmosphere
and surface), which allows a global evaluation of the
1D-Var performances. In addition, such experiments
allow the evaluation of the 1D-Var using two different
instrumental conÞgurations: a classical one and a new
one making use of high-frequency channel assimilation
in addition to classical low frequencies. One could then
evaluate the potential added value of assimilating high-
frequency channels with regard to their sensitivity to the
surface, tropospheric temperature, and humidity and
also with regard to their improved horizontal resolution.
These tests are very useful in the context of future

TABLE 2. Observation minus guess TBs and observation error
standard deviations (STD) for the different 1D-Var experiments
(AMR measurements assimilation and assimilation of virtual-
radiometer measurements). AMR and virtual-radiometer obser-
vation errors are used for the assimilation of ÔÔlow frequencyÕÕ and
ÔÔhigh frequencyÕÕ measurements, respectively

Channel frequency (GHz) Observation error (K)

AMR
18.7 6.4
23.8 11
34 8.2

Virtual radiometer
23.8 6.4
31.4 7.3
53.6 1.2
89 6.5

157 6.1
190 4.3
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altimeter missions, such as the Jason Continuity of
Service (CS) mission expected in 2020.

a. Assimilation of low-frequency pseudo-TBs

LF pseudomeasurements are Þrst assimilated in the 1D-
Var scheme.Figure 1a shows the distribution of the ÔÔob-
servedÕÕ minus Þrst-guess TB difference (TBobs 2 TBguess)
at each frequency from the LF conÞguration for all
1D-Var runs during June 2015. As expected, TB differ-
ences at each frequency show typical zero-mean Gaussian
distributions. Standard deviation of TBobs 2 TBguess is
higher at 23.8 GHz than at the other low frequencies,
as water vapor is more variable in time and space, increas-
ing inconsistencies between measurements and simula-
tions. As the ÔÔtarget truthÕÕ is known (analyses), we compute
WTC background (derived from ECMWF 24-h forecasts)
and retrieved-WTC root-mean-square errors (RMSEs)
with respect to the reference (derived from ECMWF
analysis), named RMSEBack and RMSERet, respectively.
This comparison allows one to evaluate the performance of
the 1D-Var scheme: regarding the initial background, any
improvement obtained with the 1D-Var retrievals is shown
by an RMSE reduction between background and retrieved
values. Figure 2 shows a map of WTC RMSERet minus
WTC RMSE Back values, normalized by the reference WTC,
computed within 48 longitude 3 48 latitude boxes within
June 2015. Some regional statistics of the 1D-Var are also
examined over four speciÞc regions, described hereafter:

d The PaciÞc warm pool (PWP) area, located between
the Australian and South American coasts and char-
acterized by high surface temperatures greater than
300 K, on average over the period of study.

d The dry area in the high-latitude bands, mainly located
in the Southern Hemisphere (HL area), where max-
imum surface humidity reaches 0.005 kg kg2 1.

d Two upwelling regions located off the Horn of Africa
(HA area) and along the west Californian coast

(WC area), characterized by unstable vertical stratiÞ-
cation of speciÞc humidity and temperature (signiÞ-
cant decrease in humidity and temperature inversion
around 850 hPa due to high winds blowing in a parallel
direction to the coast). These areas are selected
according to maximum values of the temperature
lapse rate between surface and 850 hPa.

Locations of study areas are plotted in Fig. 3. Figure 4
shows proÞles of speciÞc humidity RMSEBack (dashed
lines) and RMSERet (continuous line), computed over
the same time period and over each of the four selected
areas.

Figure 2 shows that the main improvements of the
1D-Var retrieved WTC are located in the midlatitude
band, where WTC is maximum. In particular, the as-
similation of LF in the 1D-Var scheme shows an error
reduction of 3%Ð4% of the WTC reference in the PWP
area. This is mainly due to the highest contribution of
the 23.8-GHz pseudomeasurements in the observation
vector. In this area, background WTC is overestimated
with respect to reference (not shown here), which is a
consequence of overestimated Þrst-guess TBs with re-
spect to pseudo-TBs at 23.8 GHz in the same area (as the
23.8-GHz channel is the most sensitive to water vapor in
the lower layers of the atmosphere, the effect of high
humidity increases simulated TB at 23.8 GHz). The in-
version of dry pseudo-TBs at 23.8GHz generates lower
retrieved water vapor than background, resulting in re-
trieved WTC closer to reference. Note that the assimila-
tion of pseudomeasurements at the two 18.7- and 34-GHz
channels results in a much lower retrieved-WTC error
reduction, not exceeding 0.8% of reference WTC, as
their sensitivity to water vapor is lower. Regarding re-
trieved proÞles of speciÞc humidity in the same area,
improvements are signiÞcant around the 850Ð950-hPa
pressure levels, where 1D-Var retrieved errors with re-
spect to reference are reduced by more than 10% of

FIG . 1. Observed minus Þrst-guess TB distributions computed over open ocean for all 1D-Var runs in June 2015 at
frequencies from (a) the LF conÞguration (18.7, 23.8, and 34 GHz) and (b) the LF1 HF conÞguration (53.6, 89, 157,
and 190 GHz).
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background errors (see Fig. 4a) These levels are the
main contributors to integrated WTC from surface to
the top of atmosphere, reaching 8% of the total in-
tegrated WTC (not shown). Other high-surface-
temperature areas show similar results: in the Indian

Ocean and in the South Atlantic Ocean. The 1D-Var
retrieved-WTC error is also reduced in comparison to
background WTC error over the HA area and WC area
upwelling regions. The impact of the assimilation of LF
measurements is however lower than over the PWP

FIG . 2. Normalized RMSE differences between 1D-Var ÔÔlow frequencyÕÕ assimilated WTC
and background WTC, with respect to the reference. RMSE is computed for 48longitude 3 48
latitude boxes for June 2015

FIG . 3. Location of the four areas of study chosen according to different geophysical parameters averaged over
June 2015: (top left) the PWP area driven by high surface temperatures, (bottom left) the HL area characterized by
surface humidity lower than 0.005 kg kg2 1, and the (top right) HA-area and (bottom right) WC-area upwelling
regions characterized by a maximum temperature decrease rate values.
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FIG . 4. The 1D-Var retrieved (dashed lines) and background (continuous lines) RMS error on speciÞc humidity,
computed over the (a) PWP and (b) HL areas and the (c) HA and (d) WC upwelling areas. Dashed lines show the
results from the assimilation of LF pseudomeasurements. Statistics are computed for June 2015.

MARCH 2019 H E R M O Z O E T A L . 479

�8�Q�D�X�W�K�H�Q�W�L�F�D�W�H�G���_���'�R�Z�Q�O�R�D�G�H�G���������������������������������3�0���8�7�&



area. This is conÞrmed byFigs. 4c and 4d, where 1D-Var
retrieved humidity RMSE reaches lower values than
background RMSE in the 950Ð600-hPa layers only and
no effect of the 1D-Var is noticed closer to the surface.
Note that the 950-hPa limit corresponds to the tem-
perature inversion and humidity decrease point, as
seen inFig. 5. The latter illustrates the complex vertical
stratiÞcation of temperature and speciÞc humidity in
both WC and HA upwelling areas. ProÞles are aver-
aged over June 2015 over both areas (dashed lines) and
compared to those averaged over the global ocean
(continuous line).

Over dry areas such as in the HL area, the impact of
the assimilation of LF artiÞcial measurements on re-
trieved humidity and estimated WTC is weak. Figure 4b
shows very similar proÞles of background and retrieved
speciÞc humidity errors, which results in a weak re-
duction of WTC RMSE Ret compared to RMSEBack.
These error statistics include some small local degra-
dations of the 1D-Var retrievals with respect to refer-
ence, with retrieved minus background WTC RMSE
difference between 0% and 1 1% of reference WTC
(see Fig. 2). In these localized regions, background
(derived from ECMWF 24-h forecasts) minus reference
(derived from ECMWF analysis) WTC difference is

high, with an overestimated background WTC of more
than 1 cm regarding reference WTC.

b. Assimilation of high-frequency measurements
in the 1D-Var

To evaluate the potential of high frequencies in the
1D-Var, pseudo-TBs at 53.6, 89, 157, and 190 GHz are
assimilated in the 1D-Var in addition to the ÔÔclassicalÕÕ
low frequencies at 18.7, 23.8, and 34 GHz. Similarly to
the assimilation of the LF pseudomeasurements, the
observed minus Þrst-guess TB distribution at each as-
similated high frequency is shown in Fig. 1b for all
1D-Var runs in June 2015. Note that TBobs 2 TBguess

differences at 53.6 GHz show the lowest standard de-
viation. The overall statistics for the other channels are
rather satisfactory.

Performance of the 1D-Var assimilating this new set of
frequencies (named LF1 HF) is analyzed during June
2015 and compared to the performance of the 1D-Var
retrievals obtained by assimilating LF pseudomeasure-
ments. The LF1 HF retrieved minus background RMSE
difference (not shown here) shows similar patterns to
those of Fig. 2, but with higher intensity in the negative
values. Thus, high frequencies contribute to reducing
even more the retrieved-WTC errors regarding the

FIG . 5. ProÞles of (a) temperature and (b) speciÞc humidity averaged over WC (dotted lines) and HA (dashed
lines) upwelling areas during June 2015. ProÞles are compared to mean temperature and speciÞc humidity proÞles
averaged over the global ocean (gray continuous line) for June 2015.
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background, with maximum WTC RMSE reduction be-
tween background and retrievals reaching 5% of refer-
ence WTC. To quantify the improvement with respect to
LF retrieved-WTC performance, Fig. 6 shows the WTC
RMSERet difference between the LF1 HF conÞguration
and the LF conÞguration, computed over June 2015. An
improvement of LF 1 HF retrieved WTC regarding LF
retrieved WTC is shown by negative values (in blue).
Conversely, positive values (in red) mean a degradation
of LF 1 HF retrieved WTC regarding LF retrieved WTC.
The main impact of high frequencies in the 1D-Var
scheme on retrieved WTC is located in the medium-
latitude bands. A study of the separate contribution of
each high frequency on retrieved WTC shows that the
contribution of both the 89- and the 157-GHz channels in
the observation vector is predominant in these areas. This
results in a larger WTC error reduction in the WC area
and HA area upwelling regions as well as in the PWP
area, by almost 2% of reference WTC, regarding LF
WTC RMS error. Similar features are seen in the South
Atlantic and southern Indian Oceans. According to in-
tegrated cloud liquid water content and zonal and me-
ridional wind speed Þelds from ECMWF analysis, these
regions are mainly related to clear-sky conditions and
medium to low wind speeds in June 2015. In such areas,
where sources of model/measurement inconsistencies
are reduced, the extra surface information brought by the
89- and 157-GHz channels contributes to retrieving drier
WTC than background and than LF retrieved WTC, thus
closer to reference WTC. Pseudo-TBs at 190GHz also
contribute to reduce retrieved-WTC RMSE regarding

LF retrieved-WTC RMSE, but at a smaller scale (the
error reduction does not exceed 0.5% of reference WTC).
Nevertheless, as it is the most sensitive channel to cloud
liquid water droplets, this channel is an accurate proxy for
cloud screening. In addition to this characteristic, the
assimilation of 190-GHz measurements could provide an
additional constraint to retrieve cloud liquid water, as
part of further plans for the use of the 1D-Var.

Finally, the impact of the 53.6-GHz channel pseudo-
measurements in the 1D-Var scheme on retrieved WTC
is low: it shows neither an increased nor a decreased
retrieved-WTC RMSE regarding LF retrieved-WTC
RMSE. This can be explained as the 53.6-GHz channel
is highly sensitive to temperature variations in higher
pressure levels (levels that contribute less to total in-
tegrated WTC), while background (from 24-h forecasts)
and reference (from analysis) temperature proÞles show
weak differences. In addition, proÞles of temperature are
highly constrained in the 1D-Var, as background tem-
perature errors (standard deviation errors) do not exceed
1 K from the surface to the other levels of the atmosphere.

Figure 7 shows proÞles of RMSERet (dashed lines)
and RMSEBack (continuous lines) on speciÞc humidity,
computed over the four areas of study (Fig. 7ashows the
PWP area,Fig. 7b shows the HL area,Fig. 7cshows the
WC area, and Fig. 7d shows the HA area) during June
2015. The contribution of high-frequency pseudomea-
surements in the assimilation scheme on retrieved WTC
is highlighted by an error reduction in proÞles of re-
trieved speciÞc humidity in the PWP area and over the
WC-area and HA-area upwelling regions. The main

FIG . 6. The 1D-Var retrieved-WTC normalized RMSE difference between the assimilation
of LF 1 HF and of LF artiÞcial measurements. Statistics are averaged in 48latitude 3 48lon-
gitude boxes over a 1-month period in June 2015.
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FIG . 7. The 1D-Var retrieved (dashed lines) and background (continuous lines) RMSE on speciÞc humidity,
computed over the (a) PWP and (b) HL areas and the (c) HA and (d) WC upwelling areas. Red dashed lines show
the results from the assimilation of LF pseudomeasurements, and cyan dashed lines show results from the assim-
ilation of LF 1 53 1 1571 190 pseudomeasurements. Statistics are computed for June 2015.
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improvement is shown between the 800- and 950-hPa
pressure levels, levels contributing the most to total in-
tegrated WTC. As expected, a very weak error re-
duction in proÞles of speciÞc humidity is shown in the
HL area, where surface humidity does not exceed
0.005 kg kg2 1, even when assimilating the HF artiÞcial
measurements in addition to the LF conÞguration. Ac-
cording to Fig. 6, high frequencies contribute to re-
ducing the retrieved-WTC error of under 0.5% more
than LF retrieved-WTC error. In such areas, this im-
provement is negligible regarding the weak WTC values
in our reference dataset.

4. Impact of real observations on retrieved WTC

Inversion of AMR ( Jason-2) measurements

In the previous section, we have shown the impact of
the assimilation of simulated measurements using the
1D-Var scheme on retrieved WTC, with a set of experi-
ments using low-frequency or high-frequency microwave
observations. In this section, the impact of the 1D-Var on
WTC when assimilating real observations is evaluated
over open seas and under clear-sky conditions.

Clear-sky AMR measurements are assimilated over
ocean four times daily at 0000, 0600, 1200, and 1800 UTC
over a 6-month time period, from June to November
2015. To feed the 1D-Var, background Þelds were taken
from ECMWF analyses to use the best estimate of the
atmosphere/surface state. To avoid any land contamina-
tion in the assimilated measurements, oceanic measure-
ments are selected when they are located at least 50km
away from the coast.

Cloudy situations are screened out using the model
background and observations. Concerning the model,
proÞles of cloud liquid water with nonzero values are
taken to screen out cloudy scenes. In addition, we also
used liquid water path product, available from the Geo-
physical Data Record (GDR) products [see Keihm et al.
(1995) for more information on the liquid water path
estimation algorithm]. Only measurements for which

liquid water path is zero are used. Finally, to avoid re-
maining inconsistencies between measured and simu-
lated TBs, measurements are rejected if the observed
minus Þrst-guess TB difference is greater than 2 times
the measured minus simulated data standard deviation
computed over 1 month prior to the assimilation period.
These a priori statistics also allow deriving mean values
for each channel to bias correct RTTOV simulations. The
obtained observed minus Þrst-guess TB difference at
each frequency shows a 0-mean Gaussian distribution, as
illustrated in Fig. 8 at 18.7 (Fig. 8a), 23.8 (Fig. 8b), and
34GHz (Fig. 8c).

Retrieved WTC, noted as WTC1DVAR , is compared to
WTC estimated from the operational log-linear algorithm,
available from the GDR products, named WTC AMR .

Figure 9 shows the scatterplot of WTCAMR versus
WTC1DVAR , computed over open ocean from June to
November 2015. One can note the overall good consis-
tency on average between WTC estimated from the
operational AMR WTC retrieval algorithm and 1D-Var
retrieved WTC, with a mean difference around 0.5 cm
over global ocean. As current WTC retrieval algorithms
are known to have good performance over clear-sky
global ocean, WTCAMR shows rather low uncertainty
(Brown et al. 2004). Thus, this plot underlines the ability
of the 1D-Var to be at least as good as current algo-
rithmsÕ performance in global oceanic clear-sky condi-
tions. However, Fig. 9 shows more scattered values
resulting in a 1.5-cm standard deviation error. These
scattered values represent less than 5% of the maximum
bin population and correspond to WTCAMR values
ranging between 0 and 30 cm. Most of the large differ-
ences seen between WTCAMR and WTC1DVAR are ex-
plained by the coarse cloud screening used in this study.
This results either in the assimilation of cloudy mea-
surements while assuming clear sky in the inversion
process, or in the assimilated of clear-sky observations
while using cloudy Þrst-guess temperature and humidity
proÞles. In the Þrst case, this causes the retrieval of
underestimated water vapor with respect to observa-
tions, as cloud liquid water is not part of the control

FIG . 8. AMR observed minus Þrst-guess TB difference at (a) 18.7, (b) 23.8, and (c) 34 GHz without bias correction (light gray) and with
bias correction (dark gray), computed over the 6-month time period from June to November 2015.
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vector, so the minimization process cannot converge to
water vapor close enough to observations. In the second
case, this causes the retrieval of overestimated speciÞc
humidity and thus overestimated WTC1DVAR with re-
spect to WTCAMR , by more than 10 cm in some cases. In
addition to these observations, areas of strong stratiÞ-
cation in the subtropical region, similar to upwelling
areas, may cause higher uncertainties in WTCAMR and
explain the overestimated values, which questions the
use of WTCAMR as an absolute reference.

To further evaluate the impact of the inversion of
AMR measurements on retrieved WTC, WTC 1DVAR is
also compared with independent data over the period
of study. The latter are derived from radio-occultation
measurements provided by the Radio-Occultation Me-
teorology Satellite Application Facility (ROM SAF),
named WTCRO. Collocated WTCRO data are selected if
they are located within 100km and 1 h of the AMR as-
similated measurements, to ensure both time and spatial
consistency.Figures 10a and 10bshow the scatterplots
of WTC RO versus WTC1DVAR and versus WTCAMR , re-
spectively. Despite the small number of collocations over
the period of study, Fig. 10a illustrates the good agree-
ment between 1D-Var retrieved and radio-occultation
WTC. A higher dispersion of WTC 1DVAR values with
respect to WTCRO is noticed for less than 5% of the total
number of observations. One can notice the slightly more
linear relationship between WTC1DVAR and WTCRO

compared to WTCAMR in Fig. 10b, as shown by the
polynomial Þt (dashÐdotted line) on both plots. This
is due to lower WTCAMR than WTCRO, and closer
WTC1DVAR to WTC RO, for values of WTCRO ranging
between 25 and 35cm. Note thatFig. 9 shows the same
trend for high values of WTC: WTC AMR is drier than
WTC1DVAR for values ranging between 25 and 35 cm.

Mean difference of retrieved minus background
WTC (WTC 1DVAR 2 WTCBACK ) is computed as well as
mean difference of retrieved minus AMR-derived WTC
(WTC 1DVAR 2 WTCAMR ) and are both illustrated in
Figs. 11a and 11b, respectively. It shows the gridded
average of the differences over the same 6-month period
of study in 28 longitude 3 28 latitude boxes, which
ensure a sufÞcient number of observations in each bin.
As seen inFig. 12, the number of clear-sky observations
in each grid cell mainly exceeds 100 per bin. However,
due to the clear-sky Þltering, this number decreases
when moving toward high latitudes and close to the
ITCZ. This also explains the need of a relatively long
period to evaluate the impact of the 1D-Var on retrieved
WTC for Jason-2altimeter mission.

One can notice the dryer WTCAMR than WTC1DVAR

around the ITCZ (where WTC AMR exceeds 30 cm) and
in the high-latitude bands, with differences ranging from
1 to 2 cm, respectively (Fig. 11b). Note that the higher
differences in the Southern Hemisphere, located around
the 608S latitude band, correspond to sea ice occurrence
during the winter period (from June to September).
Localized minimum differences in both the ITCZ and
the high-latitude bands poleward of 608N and 608S
should be interpreted with care as they are located in
regions where valid clear-sky observations are scarce
(under 50 observations in each grid cell; seeFig. 12).

Figure 11a shows clear impact of the 1D-Var on
background WTC in low- and midlatitude bands, with
retrieved WTC drier than background of about 0.5Ð
1 cm. As seen inFig. 11b, this results in low differences
between retrieved and radiometer WTC in the same
areas. This is the case in the PWP area (seesection 3and
Fig. 3), characterized by maximum sea surface temper-
ature and high WTC temporal variability within a year
(not shown here).

Even though fewer observations are assimilated in the
ITCZ, one can notice the overestimated WTC1DVAR

with respect to WTCAMR , ranging from 1 to 2 cm. This is
mainly a result of higher observed minus Þrst-guess TB
differences at 23.8 GHz (the most sensitive channel to
water vapor), followed by the 34-GHz channel. In this
region, Þrst-guess TBs are overestimated by 3Ð4 K with
respect to measurements at 23.8 GHz, resulting from a
wetter background atmosphere than radiometer mea-
surements. This gap makes the 1D-Var minimization

FIG . 9. Dispersion of AMR WTC estimated from current algo-
rithms (WTC AMR ) vs 1D-Var retrieved WTC (WTC 1DVAR ) ob-
tained by assimilating clear-sky AMR measurements over ocean.
Statistics are computed over a 6-month period of study from June
to November 2015.

484 J O U R N A L O F A T M O S P H E R I C A N D O C E A N I C T E C H N O L O G Y V OLUME 36

�8�Q�D�X�W�K�H�Q�W�L�F�D�W�H�G���_���'�R�Z�Q�O�R�D�G�H�G���������������������������������3�0���8�7�&



process difÞcult and retrieved WTC remain wetter than
WTCAMR .

Figure 11b shows that the high-latitude band is char-
acterized by an overestimation of retrieved WTC with
respect to WTCAMR . This overestimation cannot be
seen in Fig. 11abecause the impact of the inversion of
AMR measurements on background WTC in the high-
latitude band is very weak. This conÞrms that over-
estimated WTC1DVAR with respect to WTCAMR in the
high-latitude band is mainly due to the already existing

differences between radiometer and background WTC.
Part of these model background/observations inconsis-
tencies can be explained by the time gap between both
datasets, which can be as large as 3 h from the model
background (provided four times daily at 0000, 0600,
1200, and 1800 UTC) in a highly variable atmosphere
characterizing the high-latitude bands.

Even though current WTC retrieval algorithms are
globally robust over ocean, they generally show higher
uncertainties in areas where atmospheric conditions

FIG . 10. Dispersion of WTC estimated from collocated radio-occultation (WTCRO) vs (a) 1D-Var retrieved
WTC (WTC1DVAR) obtained by assimilating all-sky AMR measurements over ocean and (b) WTC estimated
from the current operational algorithm for Jason-2mission (WTCAMR). Statistics are computed over a 6-month
period of study from June to November 2015.

FIG . 11. The 1D-Var (a) retrieved minus background WTC and (b) retrieved minus AMR WTC estimated from the operational algorithm
averaged in 28 3 28grid cells over 6 months from June to November 2015.
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strongly differ from the ÔÔstandardÕÕ ones, such as in up-
welling areas characterized by complex vertical stratiÞca-
tion of temperature and humidity proÞles. To evaluate the
contribution of the 1D-Var approach regarding the oper-
ational AMR WTC retrieval algorithm, a regional study is
applied over the HA and WC upwelling areas, described in
section 3. Figure 13 shows the distribution of retrieved
humidity mean quadratic error with respect to background
(named MQE 1DVAR ) anomaly in both upwelling areas
(where surfaceÐ800-hPa temperature lapse rate is maxi-
mum). Here, the anomaly is deÞned as the ratio between
MQE 1DVAR at a given grid cell and mean MQE1DVAR ,
averaged over ocean from June to November 2015. The
scale varies between 0 and 2, with 0 meaning that
MQE 1DVAR is negligible, 1 meaning that MQE1DVAR

is similar to mean MQE 1DVAR , and 2 meaning that
MQE 1DVAR is doubled regarding the mean MQE1DVAR .
Figures 13a and 13bshow that the impact of the inversion
of AMR measurements in the 1D-Var scheme on humidity
in both upwelling areas is weak, with a mean MQE1DVAR

anomaly around 0.7 and 0.8 in HA and WC areas re-
spectively: MQE1DVAR remains lower than global mean
MQE 1DVAR . Thus, retrieved humidity proÞles remain
close to background over both areas. This results in a
higher retrieved WTC of only 0.2cm regarding back-
ground and conÞrms that the systematic underestimated
WTC1DVAR with respect to WTCAMR of around 1cm, as
shown in Figs. 13c and 13d, is mainly due to preexisting
differences between background WTC and AMR esti-
mated WTC.

5. Discussion and conclusions

The aim of this study is to explore the potential
beneÞts and limits of a one-dimensional variational
method to retrieve clear-sky WTC over global ocean.

We developed our assimilation method using a stand-
alone 1D-Var tool available from the NWPSAF and we
adapted it to allow the assimilation of passive micro-
wave observations sensitive to the air humidity in the
low-atmosphere levels and to surface properties. The
1D-Var gives as outputs proÞles of temperature and
humidity, which are then used to calculate WTC. To
evaluate the 1D-Var tool, impact studies were per-
formed using simulated measurements. Several conÞg-
urations of pseudo-observations were tested: a classical
low-frequency conÞguration similar to operational al-
timeter missions and a lowÐhigh-frequency conÞgura-
tion not yet used in the context of altimeter missions but
very useful to prepare future altimeter missions, such as
the Jason-CS mission expected in 2020.

The 1D-Var impact studies using ÔÔpseudomeasure-
mentsÕÕ showed that this approach allows the retrieval of
WTC of improved quality with regard to the back-
ground. Root-mean-square errors of WTC are reduced
with the assimilation of observations (with respect to the
target WTC). When assimilating classical low-frequency
observations, the mean impact on WTC are located in
areas of high WTC in the low-latitude band, with a 3%Ð
4% error reduction between background and retrieved
WTC. Improvements are also highlighted in upwelling
areas, characterized by complex vertical stratiÞcation in
the temperature and humidity proÞles. Note that current
statistical WTC estimation algorithms show large un-
certainties in these regions. The impact of assimilating
low- and high-frequency channels on retrieved WTC is
larger on average than the impact of assimilating low-
frequency channels alone. The effect of their assimila-
tion is extended to the low- and midlatitude bands,
where WTC error is reduced by 5% between back-
ground and analyses. The 89- and 157-GHz-frequency
channels showed the highest contribution to this error

FIG . 12. Number of AMR clear-sky observations assimilated in the 1D-var scheme in each
28 3 28grid cell from June to November 2015.
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reduction. This shows the beneÞt of the information
content of such channels, sensitive to surface and
low layers of the atmosphere. The contribution of the
190-GHz channels seemed weaker, but these chan-
nels could be very useful for cloud screening.

We also evaluated the performances of the 1D-Var us-
ing real observations from the AMR radiometer on board
Jason-2. The assimilation of these measurements (at low
frequencies) results in an overall good agreement between
retrieved and reference WTC (taken from the operational
AMR WTC retrieval algorithm, available from the GDR
products). Analyzed WTC were also compared with esti-
mates from independent data derived from radio-occultation
data. The comparison is in favor of the 1D-Var analyzed
WTC. The assimilation of low- and high-frequency
channels seems to be very promising but should be con-
ducted with care. We looked at the potential use of the
1D-Var to retrieve WTC from real ÔÔlow1 highÕÕ-frequency
measurements (results not shown in this paper).

Measurements were obtained from the AMSU-A and
MHS onboard NOAA-18 and interpolated at nadir
to simulate the altimeter-coupled radiometer measure-
ments. The assimilation of these observations shows sat-
isfactory results concerning the quality of analyzed WTC.
The latter was found in good agreement with analyzed
WTC when assimilating low-frequency channels. This
means that we do not degrade the assimilation but that we
still have to improve the assimilation of high-frequency
channels to use the information content of these obser-
vations: among others, there is a need to better deÞne
observation errors, and to better screen for clouds.

The studies described above were conducted
under clear-sky conditions. They underline the need to
improve the assimilation of radiometer measurements
from current altimeter missions under cloudy condi-
tions. This requires accounting for some microphysical
variables of clouds in the control variable of the 1D-Var,
similarly to the study of Martinet et al. (2013).

FIG . 13. (top) Retrieved-humidity mean quadratic error with respect to background anomaly over (a) HA and
(b) WC upwelling areas, selected according to maximum values of the surfaceÐ800-hPa temperature lapse rate, and
computed from June to November 2015 in 28 3 28grid cells. (bottom) AMR minus 1D-Var retrieved-WTC dif-
ferences are computed over (c) HA and (d) WC upwelling areas.
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APPENDIX

Background Humidity Error DeÞnition

Background errors provided by the NWPSAF 1D-Var
package over 54 Þxed pressure levels are usually
designed for temperature and humidity retrievals by
assimilating sounding channels, peaking in the mid- and
high troposphere. Thus, higher humidity errors are set in
the higher-tropospheric layers and decrease when
approaching the surface. In this study, the 1D-Var ap-
proach is used to estimate WTC from retrieved tem-
perature and humidity proÞles. Figure A1a shows the
contribution of each pressure level to the integrated
WTC from the surface to the top of the atmosphere.
Almost 10% of the total WTC is formed in the lower
troposphere, around the 950Ð1000-hPa interval. Thus,
lower constraints are needed on retrieved humidity
around these pressure levels, which implies higher

background humidity errors. To better adapt the
NWPSAF 1D-Var scheme to WTC estimation, humidity
errors are weighted by the contribution of each pressure
level to the integrated WTC. The new humidity
standard deviation errors (diagonal coefÞcients of the
background error covariance matrix) are illustrated in
Fig. A1b.
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