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Résumé substansif en français

Ce manuscrit présente les travaux effectués pendant les trois ans de mon doctorat sur le sujet
suivant : Analyse de sensibilité d’une méthode de filtrage des mesures de vent par lidar. Les
lidars sont des instruments de télédétection utilisés pour mesurer le vent en météorologie.
Pour améliorer les mesures, une méthode de filtrage originale a été développée, mais son
comportement est encore mal connu. L’analyse de sensibilité permet de quantifier l’influence
des paramètres sur le code. Le travail présenté ici consiste à faire l’analyse de sensibilité de
la méthode de filtrage originale. Il se compose de 8 chapitres principaux, encadrés par une
introduction et une conclusion générales :

1. Turbulence dans la couche limite atmosphérique

2. Filtrage bayésien

3. Instrument et données

4. Théorie de l’analyse de sensibilité

5. Reconstruction de milieu turbulent

6. Résultats de l’analyse de sensibilité

7. Exploration avec les expériences 2-à-2

8. Régressions pénalisées pour l’estimation des indices de Sobol

Ces chapitres sont complétés par 3 annexes :

A. Rappels théoriques

B. Preuves

C. Résultats complets d’expériences 2-à-2

Chapitre 1 : Turbuluence dans la couche limite atmosphérique

Le premier chapitre est consacré à la turbulence atmosphérique. Il rappelle des bases afin
de parler à des étudiants et/ou des novices. Le système d’équations de Navier-Stokes pour
l’atmosphère est rappelé et simplifié pour l’étude de la couche limite atmosphérique (c’est-
à-dire le premier kilomètre d’atmosphère, siège de turbulence de part l’influence du sol). Le
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vent est la grandeur cible puisque c’est la seule mesurée. La particularité de la turbulence est
qu’elle sépare le vent en une tendance déterministe et une fluctuation aléatoire.

Ψ = Ψ + Ψ′

Le système de Reynolds ainsi obtenu est celui utilisé dans les paramétrisations de modèles
numériques de prévision du temps. Certains termes revêtent une importance particulière,
de part leur interprétation et leur place dans les équations. Il s’agit de l’énergie cinétique
turbulente (TKE pour "turbulent kinetic energy") et son taux de dissipation (EDR pour "eddy
dissipation rate"). La TKE, k, est l’énergie contenue par les fluctuations du vent, on peut la
voir comme un indicateur de la "quantité de turbulence".

k = 1
2
(
u′2 + v′2 + w′2

)
L’EDR est le taux de destruction des tourbillons. Or les tourbillons se détruisent en tourbillons
plus petits, détruit à leur tour, et ainsi de suite jusqu’à ce qu’il se dissipent en chaleur. L’EDR
est donc aussi le taux de transfert des grands tourbillons vers les plus petits. Ce transfert
d’énergie entre les tourbillons de différentes tailles crée une continuité dans les échelles de la
turbulence.

Cette continuité donne des fonctions de structures (variance d’un incrément de vent) de forme
exploitable, ce qui se manifeste par un spectre du vent décroissant avec une pente constante
de -5/3 dans la zone inertielle. La pente du spectre est un critère de vérification que le
vent est bien représentatif de la turbulence. Les fonctions de structures sont exploitées dans
leur version lagrangiennes pour établir un modèle lagrangien stochastique de turbulence. Le
modèle lagrangien stochastique décrit l’évolution de particules fluides de façon lagrangienne.
C’est un mélange de l’équation de Langevin et des fonctions de structures données par la
théorie de Kolmogorov pour la turbulence. Les représentations eulériennes et lagrangiennes
donnent plusieurs voies d’estimation des quantités de la turbulence. Pour réunir la moyenne
eulérienne et lagrangienne, un noyau de régularisation gaussien de paramètre ` est utilisé. Dif-
férents estimateurs de TKE sont définis et comparés: la TKE avec une variance temporelle
(TTKE), la TKE avec une variance spatiale sur un niveau vertical (STKE), la TKE avec
une variance spatiale utilisant le noyau de régularisation gaussien. Dans le cas 1D vertical
(le seul traité dans le manuscrit), ils ne sont pas comparables car l’hypothèse de Taylor sur
la turbulence gelée n’est pas vérifiée. Cette hypothèse dit que les tourbillons mesuré à deux
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instants proches sont deux tourbillons distincts advecté par le vent moyen. Or le vent vertical
moyen est nul, il ne peut donc pas advecter les tourbillons. Il en résulte une déconnexion des
variations spatiales et temporelles.

Figure 1 – Comparaison des estimateurs de TKE. Les variances spatiales et temporelles ne
sont pas comparables.

Chapitre 2 : Filtrage bayésien

Le second chapitre, sobrement nommé "Filtrage bayésien", éclaire sur les origines de la méth-
ode de filtrage étudiée par l’analyse de sensibilité. En effet, la reconstruction de milieu tur-
bulent est issue de la communauté du filtrage non-linéaire via Christophe Baehr et Pierre Del
Moral. Le chapitre 2 donne un tour d’horizon du filtrage bayésien, linéaire puis non-linéaire.
L’idée globale du filtrage bayésien est de donner la meilleure estimation d’un processus cible,
Xt, à partir d’une série d’observation (Y0, ..., Yt) et d’un modèle imparfait d’évolution de Xt.
À la fois le modèle et les observations sont sources d’erreurs. Il y a deux étapes dans le filtrage
bayésien (dont les noms varient suivant les auteurs) : la mutation et la sélection. La mutation
consiste à prédire l’état suivant Xt+1 à partir de Xt avec le modèle. Elle donne l’état a priori
du processus cible. La sélection consiste à corriger cet état en fonction des observations. Elle
donne l’état a posteriori du processus cible.

On parle de filtrage linéaire lorque le modèle est linéaire et que l’opérateur d’observation
est linéaire. Le filtre de Kalman donne une solution optimale au problème de filtrage linéaire
avec des bruit gaussiens indépendant. La performance du filtre de Kalman a poussé la com-
munauté à l’adapter aux cas non-linéaires. La première généralisation, l’EKF, qui consiste à
utiliser une approximation de Taylor d’ordre 1 pour linéariser le problème ne donne pas de très
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bon résultats (instabilité numérique, cout de calcul important). La généralisation suivante,
l’UKF, utilise la transformation "unscented" qui a donné son nom au filtre et qui approx-
ime la loi de probabilité plutôt que la transformation non-linéaire. Cette solution est encore
très appliquée car elle donne de bons résultats dans une large gamme de problèmes. Son
amélioration, l’EnKF, va plus loin dans l’approximation de la loi de probabilité en utilisant
une méthode de Monte Carlo. Bien que plus gourmand en calcul, l’EnKF est une solution
dans les cas fortement non-linéaire où l’UKF atteint ses limites. Les filtres à particules se
basent sur la méthode de Monté Carlo dès la base du problème de filtrage. La similarité entre
EnKF et filtre à particules n’est qu’apparente et leurs différences sont soulignées. L’étape de
sélection dans un filtre à particules peut prendre différentes formes, correspondant à différent
algorithmes. L’algorithme SIS pondère les particules par leur vraisemblance mais ne les mod-
ifient pas. L’algorithme SIR remplace la pondération par un rééchantillonage des particules
suivant leur vraisemblance. L’algorithme de sélection génétique exécute l’algorithme SIR sur
seulement une partie des particules, choisies aléatoirement suivant leur vraisemblance. Pour
le filtrage des mesures de vent, l’algorithme de sélection génétique est utilisé.

Figure 2 – Illustration des deux étapes du filtrage bayésien: mutation et sélection.

Chapitre 3 : Instrument et données

Le troisième chapitre est consacré à la technologie lidar et aux données qu’il produit. Le lidar
émet une impulsion lumineuse dans l’atmosphère. Une partie de cette lumière est renvoyée
par les particules (poussières, fumées, embruns...) présentes dans l’atmosphère. Lorsque les
particules qui renvoient l’onde lumineuse bougent dans l’axe du rayon, la fréquence de l’onde
incidente est modifiée par effet Doppler. La fréquence de la lumière récupérée sur le lidar sera
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augmentée (resp. diminuée) si les particules rétro-diffusantes se déplacent vers le lidar (resp.
s’éloignent du lidar), ce qui permet de mesurer le vent. Pour mesurer le décalage en fréquence,
on utilise une détection hétérodyne. Le principe est de mélanger sur le récepteur le signal
revenant de l’atmosphère et un oscillateur local. L’interférence entre l’oscillateur local et le
signal reçu rend le décalage Doppler facilement isolable sur un spectre. Malheureusement,
pour calculer un spectre correct (via une transformée de Fourier rapide) il faut un certain
nombre de points. Plus on accumule de point pour le spectre, plus la l’onde lumineuse
s’éloigne. La mesure est donc intégrée sur une porte, dont la taille est un compromis entre
la qualité du spectre et la résolution spatiale. Pour le lidar utilisé, la résolution spatiale
est de 50 mètres. L’explication du principe de mesure permet de se rendre compte de deux
limitations importantes : seul la composante du vent dans l’axe du rayon est mesurée et le
vent est intégré sur une certaine distance.

Figure 3 – Illustration de la rétrodiffusion dans l’atmosphère. C’est le principe utilisé par le
lidar pour mesurer le vent.

Les données utilisées proviennent d’une campagne de terrain qui a eu lieu lors de l’été
2011 à Lannemezan (Hautes Pyrénées). Le projet de recherche associé, BLLAST (Boundary
Layer Late Afternoon and Sunset Turbulence), a pour but de caractériser la turbulence dans
la couche limite atmosphérique lors de la transition du coucher de soleil. C’est une transition
difficile à appréhender car la source d’énergie pricipale (le soleil) se tarit, ce qui modifie
les flux et la circulation sur la verticale. Les données choisies pour tester la reconstruction
correspondent au domaine de pertinence du modèle lagangien stochastique : turbulence sèche,
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bien développée. Il s’agit des mesures du 30 juin 2011, entre 14h42 to 16h45 (heure locale).
Seules les mesures de vent vertical sont utilisées.

Figure 4 – Données mesurées par le lidar le 30 juin 2011 à Lannemezan. La partie utilisée
pour cette étude est grisée.

Pour tester la méthode de reconstruction, nous voulions la tester sur le plus grand jeu de
données possible. Le problème des données manquantes s’est alors posé. La solution retenue
a été incluse dans le brevet (Baehr et al., 2016). D’abord nous distinguons plusieurs type
de données manquantes: mesures irrégulières, valeurs manquantes à cause de l’instrument,
valeurs manquantes aléatoirement. Les mesures irrégulières sont des arrêts non-signalés de
l’instrument. Les valeurs manquantes à cause de l’instrument sont dues à ses limitations
connues. Les valeurs manquantes (aléatoirement ou à cause de l’instrument) sont signalées
(par des NaN). Ensuite, les mesures irrégulières sont remplies de valeurs manquantes. Si une
plage de valeur manquantes est trop importante, le système redémarre à la prochaine donnée.
Si les valeurs manquantes ne sont pas en trop grand nombre, l’étape de sélection est sautée
et les estimations sont faites différemment.

Chapitre 4 : Théorie de l’analyse de sensibilité

Le chapitre 4 est une introduction à l’analyse de sensibilité basée sur la variance, celle qui a été
faite ici. Les autres manières de faire l’analyse de sensibilité sont brièvement évoquées, puis
les différents théorèmes sur lesquels se basent l’analyse de sensibilité. En guise de formation,
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les démonstrations ont été refaites, elles sont jointes en annexe. L’analyse de sensibilité basée
sur la variance est fondée sur une décomposition de variance très générale. La sortie du code
est vue comme une fonction des variables d’entrée.

Y = f(X)

avec Y ∈ R et X ∈ Rp. Cette fonction est décomposée par projections sur des espaces
orthogonaux : les espaces de Hoeffding. La sortie s’écrit alors

Y =
∑
u∈I

fu(Xu)

= f∅ +
p∑
i=1

fi(Xi) +
∑

16i<j6p
fij(Xi, Xj) + · · ·+ f1,...,p(X1, . . . , Xp)

La variance de la sortie est ainsi exprimée comme une somme de termes attribués à chaque
groupe de variable d’entrée u. Le nombre de variable d’entrée comprises dans un groupe
est appelé l’ordre du groupe (noté |u|). On en déduit des indices de sensibilité : les indices
de Sobol. La décomposition de Hoeffding définit les indices de Sobol simples. Elle peut
s’appliquer à n’importe quel code, pourvu que sa variance soit finie. Depuis les indices de
Sobol simples, on définit les indices de Sobol complets (qui incluent les contributions d’ordre
inférieur des membres du groupe) et les indices de Sobol totaux (qui incluent les contributions
à tout ordre de tous ses membres).

Du = V (fu(Xu)) = V (Y )Su

DT
u =

∑
v∈I

v∩u6=∅

Dv

DC
u =

∑
v∈I
v⊆u

Dv

Dans cette thèse, seuls les indices simples d’ordre 1 et 2 et les indices totaux d’ordre 1 sont
estimés. Plusieurs estimateurs existent. Les estimateurs utilisés sont précisés dans la table
suivante :

Formule de l’estimateur Référence

D̂i = 1
m

m∑
e=1

f(xe)(f(zei ,xeī )− f(ze)) (Saltelli et al., 2010) eq. (16)

D̂T
i = 1

2m

m∑
e=1

(f(zei ,xeī )− f(xe))2 (Saltelli et al., 2010) eq. (19)

D̂ij = 1
m

m∑
e=1

(
f(zei ,xeī )f(zej ,xej̄)− f(xe)f(ze)

)
− D̂i − D̂j (Saltelli, 2002a)

L’estimation directe des indices de Sobol est trop couteuse en temps de calcul. Ce problème
se pose pour beaucoup de systèmes dont on voudrait faire l’analyse de sensibilité. La stratégie
classique consiste à émuler le système grâce à des méthodes statistiques. A partir d’une
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surface de réponse donnée (aussi grande que le calcul le permet), on construit un estimateur
statistique que l’on peut ensuite utiliser pour prédire la réponse du système à très faible coût.
L’estimateur statistique est appelé méta-modèle. Dans notre cas, il est obtenu par krigeage
avec des processus gaussiens. Le variogramme a été choisi gaussien après examen des nuées
variographiques. Toutes les expériences numériques d’analyse de sensibilité ont été effectuées
avec les packages Python opensource sklearn pour le krigeage par processus gaussien et
SALib pour l’estimation des indices de Sobol. Les résultats sont présentés dans le chapitre 7.

Chapitre 5 : Reconstruction de milieu turbulent

Le chapitre 5 est au cœur du manuscrit : il imbrique les chapitres précédent pour établir
la méthode de reonctruction de milieu turbulent. La "reconstruction de milieux turbulents"
désigne une nouvelle méthode de post-traitement des mesures rapides de vent, qui permet de
filtrer les mesures et d’estimer des paramètres de la turbulence en temps réel. L’atmosphère
y est représentée non pas par un modèle en point de grille mais par un ensemble de particules
lagrangiennes. Ces particules lagrangiennes sont guidées par le modèle stochastique lagrangien
présenté au chapitre 1. Elles sont aussi vues comme un ensemble de réalisation de la variable
aléatoire "vent", ce qui permet d’utiliser les méthodes de filtrage présentées au chapitre 2.
Enfin, la technique est appliquée aux données lidar, présentées au chapitre 3.

Figure 5 – Géométrie du problème de reconstruction 1D et vocabulaire.

La reconstruction de milieu turbulent est une méthode itérative qui répète quatre étapes
à chaque nouvelle observation : mutation, conditionnement, sélection, estimation. La mu-
tation prédit la position et la vitesse des particules au pas de temps suivant avec le modèle
stochastique lagrangien. Le conditionnement s’assure que les particules sont correctement

xvi

http://scikit-learn.org/stable/modules/gaussian_process.html
http://salib.readthedocs.io/en/latest/


Figure 6 – Évolution du vecteur d’état des particules lors d’une itération.

réparties dans le volume de mesure. Deux choses sont vérifiées : qu’aucune particule n’est
restée hors du volume de mesure et qu’il n’y a pas de concentration/vide de particule impor-
tant. La sélection incorpore l’observation dans le système de particules via l’algorithme de
sélection génétique : les particules prochent de l’observation restent à leur place, les autres
sont rééchantillonées (suivant l’algorithme SIR). L’estimation ne modifie pas le vecteur d’état
mais l’utilise pour mettre à jour les quantités utilisées dans le modèle lagrangien stochastique
et estimer les variables de sortie (vent, TKE). Chaque étape est détaillée et illustrée. Les
paramètres qui apparaissent çà et là sont répertoriés car ils seront les entrées de l’analyse de
sensibilité.

Figure 7 – Organisation des quatre étapes d’une itération de la méthode de reconstruction
avec pour chaque étape les paramètres qui l’influence.

Pour faire l’analyse de sensibilité, une expérience de validation est mise en place et des
scores sont définis. Cinq scores sont les sorties du système soumis à l’analyse de sensibilité.
Le nombre de potentiels nuls, NG0, compte le nombre de fois où la sélection ne peut pas se
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faire, faute de particules proche de l’observation. De tels cas sont plus où moins fréquents
suivant les réglages. Quand ils sont nombreux (NG0 élevé), c’est le symptôme de dégénération
du filtre : les particules partent à l’infini à cause de mauvais réglages. La pente du spectre
de vent, b, a une valeur théorique de -5/3 dans la turbulence inertielle. Lorsqu’il reste du
bruit dans le signal, le spectre remonte en hautes fréquences, ce qui augmente b. A l’inverse,
lorsque le filtre fait trop de zèle, b diminue en dessous de -5/3. L’erreur quadratique moyenne
(RMSE) sur la TKE, rk, est un score de comparaison entre la LSTKE (calculée grâce aux
particules à haute cadence) et la TTKE (calculée sans particules de façon classique). Si la
LSTKE est comparable à la TTKE, ce score devrait être minimum pour les bons réglages.
L’erreur quadratique moyenne sur le vent, rV , est un score de comparaison entre un vent de
référence et le vent estimé à l’issue du filtrage. Si le bruit est bien retiré, ce score devrait
être bas. Le temps d’exécution chronomètre l’exécution d’un seul run car c’est une contrainte
pratique importante.

Figure 8 – Schéma de l’expérience de validation du système de reconstruction qui permet de
définir les scores.

Pour certains de ces scores, des résultats théoriques sont connus. La décroissance de
l’erreur sur le vent en racine du nombre de particules a été établie par Baehr (2010); ?. La
décroissance exponentielle du nombre de potentiel nul avec le nombre de particules s’établie
facilement depuis un le théorème 7.4.1 de Del Moral (2004). On établit dans ce manuscrit le
résultat suivant :

xviii



Theorem 0.1 (Influence de σobs et σadd sur NG0). Si les hypothèses suivantes sont satisfaites

• Le vent réel V r
z,t est stationnaire d’order 2 et ergodique en temps et en espace.

• Les particules après l’étape de conditionnement Ṽt sont gaussiennes avec la même
moyenne et variance que V r

z,t.

Alors, le nombre moyen de potentiel nuls NG0 est majoré par une fonction de σobs et σadd.

E [NG0] 6 NtNz
(σadd)2 + 2k

−
(
(σobs)2 + 2k

)
log
(
ι22π

(
(σobs)2 + 2k

)) (1)

avec ι = 10−16, le seuil pour le zero machine, et k = 1
2V
(
V r
z,t

)
(constante de part l’hypothèse

de stationnarité).

Figure 9 – Forme du majorant de l’espérance de NG0 suivant σadd et σobs.

Chapitre 6 : Résultats de l’analyse de sensibilité

Le chapitre 6 présente les résultats de l’analyse de sensibilité et interprète les résultats. On
rappelle que les indices de Sobol sont estimés à partir des prédictions d’un méta-modèle
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gaussien et que les estimateurs utilisés sont présentés au chapitre 4. Le système sur lequel
est fait l’analyse de sensibilité inclut des mesures de bonnes qualités prises comme référence.
Les sorties sont les scores calculés grâce à la référence (introduits au chapitre 5). Les entrées
sont les paramètres qui apparaissent dans la description de la reconstruction au chapitre 5
complétés par le bruit d’observation réel, σadd (puisque les observations sont simulées depuis
la référence) et par le temps d’intégration, τ , qui permet de calculer le RMSE sur la TKE.
Au total, neuf paramètres sont en entrée:

• C0 constante de Kolmogorov, dans le modèle lagrangien.

• C1 coefficient devant la fluctuation, dans le modèle lagrangien.

• ` longueur d’interaction, dans la moyenne locale avec un noyau de régularisation gaussien.

• N le nombre total de particules.

• σadd le bruit d’observation réel, ajouté à la référence pour simuler les observations.

• σobs le bruit d’observation donné au filtre, utilisé à l’étape de sélection.

• σV la variance de vent par défaut, utilisé pour éviter les paquets de particules à l’étape
de conditionnement.

• σX l’erreur attribuée à la discrétisation par un schéma d’Euler explicite, à l’étape de
mutation.

• τ le temps d’intégration, utilisé pour calculer la TTKE depuis la référence et moyenner
la LSTKE.

Figure 10 – Schéma du système sur lequel est fait l’analyse de sensibilité.

Des graphiques variés sont utilisés pour étayer les commentaires. D’abord, les sorties
sont analysées une par une. Le temps d’exécution, Texe, n’est influencé que par le nombre
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de particules, N . La pente du spectre du vent, b, est influencé par les bruits d’observation
σadd et σobs (respectivement le bruit réel et bruit donné au filtre). L’erreur sur le vent, rV ,
est influencée par le bruit d’observation réel, σadd, le nombre de particules, N , la constante
de Kolmogorov, C0 et le bruit d’observation donné au filtre, σobs. L’erreur sur le TKE et
le nombre de potentiel nuls sont influencés par beaucoup de variables dont une large part
d’interactions. Les interactions impliquent des effets secondaires lors du réglage des entrées.
Par conséquent, ces deux sorties sont difficilement utilisables pour régler les entrées.

Ensuite, les sorties sont prises toutes ensembles pour adopter un point de vue global.
Les indices de Sobol des cinq entrées sont sommés. On peut les voir comme les marqueurs
d’influence sur une sortie globale qui pondère les cinq sorties par 1. Dans ce résumé, seul le
pavage des indices simple d’ordre 1 et 2 et le graphe d’interaction sont montrés. Sur chacun
d’eux, les entrées qui ressortent sont N , σadd et σobs, surtout de part leur influence seuls (leur
indice de Sobol total est presque égal à leur indice de Sobol simple). Dans un second temps, C0
et C1 sont bien visibles aussi, mais leur part d’interaction est beaucoup plus marquée. Enfin
σX , `, σV , τ ressortent peu, malgré que σX et ` se remarquent mieux de part leur influence
en interaction. On peut donc dresser le tableau suivant, où les entrées sont regroupées en
groupe d’influence comparable.

Overall influence

Simple N σadd σobs C0 C1 σX ` τ σV

0.223 0.188 0.115 0.042 0.034 0.016 0.007 -0.002 -0.004

Total σadd N σobs C0 C1 σX ` σV τ
0.373 0.322 0.235 0.215 0.158 0.115 0.074 0.04 0.038

Groupe 1 Groupe 2 Groupe 3 Groupe 4

Table 1 – Indices de Sobol d’ordre 1 moyens des cinq sorties.

L’analyse des sorties permet d’identifier celles qui sont le plus pertinentes pour faire un
réglage du système : la pente du spectre du vent, b, l’erreur sur le vent, rV et le temps
d’exécution, Texe. L’analyse des entrées fait ressortir des groupes de paramètres d’entrée
d’influence comparable, dont le premier contient le bruit d’observation réel, σadd, le bruit
d’observation donné au filtre, σobs et le nombre de particules, N . Ces résultats permettent
de réduire le système initial, assez complexe, à un système simple de 3 entrées et 3 sorties.
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Figure 11 – Indices de Sobol d’ordre 1 : sim-
ple (blue) et total (green) pour la pente du
spectre du vent.

Figure 12 – Indices de Sobol d’ordre 1 : sim-
ple (blue) et total (green) pour l’erreur sur le
vent.

Figure 13 – Indices de Sobol d’ordre 1 : sim-
ple (blue) et total (green) pour l’erreur sur la
TKE.

Figure 14 – Indices de Sobol d’ordre 1 : sim-
ple (blue) et total (green) pour le nombre de
potentiels nuls.
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Figure 15 – Somme des indices de Sobol simple d’ordre 2 (hors diagonale) et d’ordre 1 (diag-
onale) de toutes les entrées.
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Figure 16 – Graphe d’interaction de la "sortie globale". Couronne intérieure : indice simple
d’ordre 1, couronne extérieure : indice total d’ordre 1, opacité des arrêtes : indice simple
d’ordre 2.
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Chapitre 7 : Exploration avec les expériences 2-à-2

Le chapitre 7 présente les résultats d’expériences complémentaires appelées expériences 2-à-
2. Elles consistent à ne faire varier que deux paramètres d’entrée, laissant les autres à une
valeur nominale. L’avantage de telles méthodes est de visualiser les variations des sorties
en fonction des paramètres. Si les indices de Sobol apportent bien une information sur la
force de l’influence, les expériences 2-à-2 permettent de voir dans quel sens elle s’exerce. Ces
expériences ont été utilisées pour établir la stratégie de réglage sur le système réduit qui
ressort de l’interprétation des indices de Sobol.

Les variations de la pente du spectre du vent en fonction des bruits d’observation σadd

et σobs (réel et donné au filtre, respectivement) montre que la pente du spectre est égale
à la valeur théorique de -5/3 quand σadd = σobs. Ce résultat dit que le spectre du vent
est correct lorsque le bruit qu’on donne au filtre est égal au bruit réel, ce qui n’a rien de
choquant. Lorsqu’on regarde l’erreur sur le vent en fonction des bruits d’observation σadd et
σobs on constate que pour un σadd donné (en pratique ce paramètre est fixe mais inconnu),
elle est minimale lorsque σobs = σadd. Comme les variations de la pente du spectre sont
maximale autour de la ligne σobs = σadd et qu’on dispose d’une valeur cible, il est judicieux
d’utiliser cette sortie pour régler le paramètre σobs de façon à ce que b = −5/3. Alors, on a
expérimentalement réglé σobs à la même valeur que σadd.

Figure 17 – Évolution de la pente du spectre, b, quand seulement σadd et σobs varient. Le
plan rouge est au niveau b = −5/3 (valeur théorique attendue).

Une fois que σobs et σadd sont confondus, on note toujours leur valeur σobs. L’évolution
de l’erreur sur le vent en fonction du nombre de particules montre une décroissance en

√
N ,

comme prévu par la théorie. L’erreur est aussi proportionnelle au bruit d’observation. Elle
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Figure 18 – Évolution de l’erreur sur le vent, rV , quand seulement σadd et σobs varient.

peut donc être estimée par la formule suivante

rV = K
σobs√
N

où est une constante estimée à K = 2.33.

Par ailleurs, on montre que le temps exécution croit proportionnellement à N1.75. Si l’on
double la quantité de particules, le temps de calcul sera multiplié par 3.36. Ce chapitre ce
conclut donc par l’établissement d’une stratégie de réglage très simple :

1. Mettre N à une valeur faible, de façon à ce que Texe soit très petit.

2. Pour σobs prenant plusieurs valeurs encadrant le bruit réel, calculer la pente du spectre
du vent, b.

3. Mettre σobs à la valeur qui donne b le plus proche de -5/3. σobs est expérimentalement
égal à σadd.

4. Augmenter N autant que possible. L’erreur sur le vent est alors minimum, estimée par
K σobs√

N
avec K = 2.33.

D’autres résultats se retrouvent dans les expériences 2-à-2, comme la variation du nombre de
potentiel nuls, NG0 en fonction de N et aussi de σobs et σadd. L’influence de C0 et C1 est
aussi décortiquée.
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Figure 19 – Évolution de l’erreur sur le vent en fonction de N quand σobs = σadd, pour
différente valeurs de σobs. Les régressions (lignes pointillées) montrent que la décroissance se
fait en racine carrée.

Chapitre 8 : Régressions pénalisées pour l’estimation des in-
dices de Sobol

Ce huitième et dernier chapitre fait l’expérience d’estimer les indices de Sobol par des régres-
sions pénalisées. Pour un code avec p paramètres d’entrée, il y a 2p groupes de paramètres,
donc autant d’indices de Sobol à estimer. Le nombre d’indices de Sobol croit exponentielle-
ment avec le nombre d’entrées. En pratique, seulement quelques uns sont intéressants. Le
problème n’est donc pas tant d’avoir une estimation précise, mais plutôt une estimation qui
fasse le tri.

Les régressions pénalisées fournissent des estimateurs biaisés, mais dont les plus petits
coefficients vont aller d’eux même à zero. Cela facilite l’interprétation finale et enlève la
part de subjectivité dans le choix des indices interprétés. Leur construction part du constat
que les indices de Sobol peuvent être exprimés comme la solution d’une régression linéaire.
Lorsqu’on écrit l’estimateur correspondant aux moindres carrés ordinaires, on retombe sur
l’estimateur de Sobol (2001). Ce sera le point de comparaison pour les nouveaux estimateurs.
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Les nouveaux estimateurs sont obtenus en rajoutant une pénalité sur les coefficients dans le
problème de minimisation des moindres carrés. En rajoutant une pénalité L1, on obtient
l’estimateur Lasso. En rajoutant une pénalité L0, on obtient l’estimateur de meilleur sous-
ensemble. Les estimateurs sont notés de la façon suivante :

Ŝls = argmin
a

∑
u∈I′
‖Y − auYu‖22 + ‖Yu − auY ‖22


Ŝl1 = argmin

a

∑
u∈I′
‖Y − auYu‖22 + ‖Yu − auY ‖22 + λ‖a‖1


Ŝl0 = argmin

a

∑
u∈I′
‖Y − auYu‖22 + ‖Yu − auY ‖22 + λ‖a‖0


avec Y = f(X), Yu = f(Zu, Xū), ‖a‖1 =

∑
u |au| et ‖a‖0 =

∑
u 1au 6=0.

Figure 20 – Trois estimateurs sont issus de régressions (barres de couleur) sontcomparé à
l’estimateur de Monte Carlo (ligne noire poitnillée). On peut voir que l’estimateur aux moin-
dres carrés ordinaire (blue) conne la même estimation que Monte Carlo (plus ou moins un
alea dû à l’estimation). Le meilleur sous-ensemble est exactement égal au Monte Carlo, mis à
part les indices plus petit qu’un seuil, qui sont à 0. L’estimateur Lasso donne une estimation
toujours plus faible dont la réduction s’arrête à 0.

L’estimateur Lasso sous-estime systématiquement l’indice de Sobol. On peut l’exprimer
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en fonction de l’estimateur aux moindres carrés grâce un seuillage doux:

Ŝl1u = max
(
Ŝlsu − ε1, 0

)
L’estimateur de meilleur sous-ensemble a l’avantage d’être moins biaisé. On peut l’exprimer
en fonction de l’estimateur aux moindres carrés grâce un seuillage dur:

Ŝl0u = Ŝlsu 1
Ŝlsu >ε0

Malheureusement, la résolution du problème de minimisation des moindres carrés avec pénal-
ité L0 est NP-difficile. Il n’existe pas d’algorithme qui converge en temps fini. L’estimation
donnée a été obtenue par seuillage dur de l’estimateur de Monte Carlo. L’estimateur de
meilleur sous-ensemble ne fait donc pas l’économie d’estimer les indices de Sobol par Monte
Carlo, alors que l’estimateur Lasso est accessible par d’autres algorithmes de minimisation.

En l’état, les régressions pénalisées ne ferait que déplacer la subjectivité de la sélection
des indices de Sobol vers le choix de la pénalité, λ. Pour choisir objectivement λ, nous avons
choisi de calculer l’erreur quadratique moyenne pour plusieurs valeurs de λ et de choisir celle
qui donne l’erreur la plus faible. Ces méthodes ont été testées favorablement sur l’exemple
montré (sortie rV , estimation des indices simple d’ordre 1).

Conclusion générale

Ce travail fait l’analyse de sensibilité d’une méthode de filtrage pour les mesures de vent.
La méthode de filtrage y est décrite très précisément et un effort de rationalisation a été
nécessaire pour définir les système sur lequel porte l’analyse de sensibilité. L’analyse de
sensibilité consiste à estimer les indices de Sobol d’ordre 1 (simple et totaux) et 2 (simple)
à l’aide d’un méta-modèle obtenu par krigeage gaussien. Le système retenu comporte 9
entrées et 5 sorties. L’analyse de sensibilité permet de le réduire à 3 entrées et 3 sorties.
Des expériences complémentaires (expériences 2-à-2) permettent d’explorer la façon dont les
paramètres principaux influencent les sorties. Il en résulte une stratégie très simple de réglage
des paramètres les plus importants. Par ailleurs, une nouvelle méthode d’estimation-sélection
des indices de Sobol par régression pénalisées a été testée. Les indices de Sobol peuvent s’écrire
comme la solution d’un problème de régression. L’ajout d’une pénalité permet de sélectionner
automatiquement les indices les plus pertinents. Un exemple d’estimation-sélection autonome
est donné pour deux types de pénalités (L1 et L0).

Annexe A : Rappels théoriques

La première annexe a pour but d’unifier les bases théoriques communes à la plupart des
lecteurs. Il veut accessible à de futurs étudiants donc reprend assez en amont la théorie des
probabilités. Tribu, mesures, probabilité sont définies rapidement avec quelques exemples
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et contre-exemples. La notion de variable aléatoire est étendue aux "fonctions aléatoires",
c’est-à-dire les processus stochastiques. Deux exemples de processus stochastiques sont don-
nés à titre d’illustration : le mouvement brownien et l’équation de Langevin. Ils permettent
d’aborder des questions récurrentes en traitement du signal, telles que la stationnarité et
l’ergodicité. En effet, la mesure la couche limite atmosphérique n’y fait pas exception, le
"signal" que l’on cherche est aléatoire (c’est un processus stochastique) alors que la mesure ne
donne qu’un "signal" temporel (une réalisation du processus stochastique). Stationnarité et
ergodicité sont les deux hypothèses nécessaires pour pouvoir déduire d’une seule réalisation
des quantité représentative du processus stochastique (moyenne, auto-corrélation...). Le mou-
vement brownien et l’équation de Langevin les illustre bien car le premier n’est ni stationnaire
ni ergodique, alors que le second est stationnaire au sens faible et ergodique. Les résultats sur
l’équation de Langevin re-servent lors de l’établissement du modèle Lagrangien de turbulence
au chapitre suivant.

La génération de nombres aléatoires y est aussi abordée. En effet, un générateur de mau-
vaise qualité détériore le filtrage et peut être difficile à détecter. Les générateurs aléatoires des
deux langages de programmation utilisés (Scilab et Fortran 90) ont été testés. Tous deux sont
de bonne qualité, avec un net avantage de rapidité pour le générateur Fortran. L’algorithme
d’inversion de la fonction de répartition est réutilisé dans le chapitre 6 pour expliquer le
rééchantillonage des particules.

Figure 21 – Exemple de rééchantillonage par inversion de la fonction de répartition.
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Annexe B : Preuves

L’annexe B contient les démonstrations de certains résultats théoriques utilisés dans le corps
du manuscrit. Elles sont organisées en trois sous-sections :

B1. Formules sur les sorties de la reconstruction

B2. Théorèmes d’analyse de sensibilité

B3. Résultats relatifs à la régression pénalisée

Certaines preuves sont des réécritures de preuves existantes avec les notations de ce manuscrit.
La référence vers la preuve initiale est alors donnée en tout début de preuve. Initialement
écrites pour de l’auto-formation, ces preuves sont soit un peu plus détaillées soit présentées
différemment des preuves initiales. Les preuves où aucune référence n’est donnée au tout
début sont un travail personnel.

Annexe C : Résultats complets des expériences 2-à-2

L’annexe C contient les résultats complets des expériences 2-à-2 présentées au chapitre 7.
Les résultats majeurs sont synthétisés dans le chapitre 7. L’annexe rappelle le cadre des
expériences (liste des entrées, des sorties, schéma du système) et donne un tableau d’hyperliens
pour faciliter la navigation. Les résultats sont listés par expériences (14 au total) puis par
sorties (5 pour chaque expérience). Elle permet de vérifier que l’effort de synthèse du chapitre
7 ne passe pas à côté de commentaire important et donne la possibilité au lecteur de les faire
par ailleurs.
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General introduction

– What do you do for living?
– I’m doing a PhD on the sensitivity analysis of a filtering method for wind
measurements.
– Cool, I suppose! But, what is that for?

Usual beginning of conversation with new people during these last three years.

The path to connect research to the "real world" can be long and tricky. The job of an
introduction is to make it short and simple. To do short, I start with the title and try to
make it simple:

Sensitivity analysis of a filtering algorithm for wind lidar measurements

Wind is the movement of the air. We will abord only the wind in the boundary layer (first
kilometer of atmosphere). In this area of atmosphere, there is turbulence (rapid variations of
wind around its average value) and humans. It makes the boundary layer very important be-
cause of the direct impact on human activities. However, meteorological models hardly catch
turbulence and boundary layer processes. To improve them, scientists need measurements.

Lidar instruments are well suited to measure wind in the boundary layer. They are
remote sensors with good time and space resolution (for example, the lidar used in this thesis
has 50m of vertical resolution and 4s of time resolution). To improve the knowledge of wind
and turbulence we get from them, measurements are filtered.

Filtering consists in removing the noise of a signal. This thesis is about a particular
filtering method that does more than denoise the wind measurment. It also provides tur-
bulence estimation in real time, which was previously unseen. But this method is new and
the estimation must be qualified. In particular, the influence of the settings has never been
assessed.

Sensitivity analysis quantifies the influence of input parameters on a given output.
Sensitivity indices (Sobol indices) are estimated for the filtering method. The settings of the
filtering method will be our input parameters and some scores will be defined to be outputs.
Knowning the influence of parameters allow to build tuning strategies, which help to improve
the quality and the self-reliance of the wind measurements and to adapt to new conditions.
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How is it useful?

Improving the measurements of wind and turbulence is useful for many sectors of activity,
meteorology on top. The need of measurements to build know better the processes at stake
and build relevant meteorological models is obvious. The improvement of meteorological
models has then positive fallout on our daily life. We can quote at least two sectors where
the benefit of good wind and turbulence measurements is direct: wind energy and aeronautics.

Wind energy turn trendier each year thanks to the increasing concern of people to envi-
ronmental questions (as shown by the figure 22). Indeed, energy is the dominant contributor
to climate change, accounting for around 60 per cent of total global greenhouse gas emissions.
This is also a social challenge, given that one in five people still lacks access to modern elec-
tricity. Affordable and sustainable energy is the 7th Sustainable Development Goal targeted
by the United Nations. Solar or wind energy are well suited to answer a local, decentralized,
autonomous demand. No greenhouse gas is emitted during the production of power. The
energy source is free and of unlimited supply. Industrial risk is reduced to nearly zero in
comparison with nuclear power plant and dams. Nevertheless, their costs are still higher
than those of fossil-based and nuclear energy. Indeed, fossil-based and nuclear energy are well
known technologies, relying on a well trained net of companies and customs. For wind energy,
such net is only emerging and technologies are not as mature. Moreover, efficient solutions
to deal with the intermittent nature of the energy source are still to be found. Smart grids
can alleviate the need of storage (not possible at large scale) but algorithms need information
about the energy source.

Figure 22 – Projected evolution of renewable energy mix in the the US.
Source: US Energy Information Administration, Annual Energy Outlook 2012.

For wind energy, the need of wind measurements increases because it helps assessing the
energy source. Wind turbines are about 100m high (and their height tends to increase).
Surface stations are not sufficient to provide such information. Remote sensors, such as
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lidars, are voted in by many wind energy companies as a solution to measure the wind
around turbines. The benefits of having accurate measurements of wind aloft are three fold
for wind energy:

• Measure the wind ahead of a turbine in order to make short term prediction of produc-
tion.

• Measure the wind behind a turbine, to characterize wakes created by the turbine.

• Measure the wind on a prospective site, to assess the opportunity of building a wind
farm.

The two last benefits can be combined to optimize the wind farm layout1 (illustrated in figure
23). Beside the wind, the turbulence is also a valuable information to manage wind farm.
Turbulence reduces the aerodynamic performance of the blades and apply random variations
of forces which damage the turbine faster. Having information about turbulence allow to
include maintenance plan in the management of the farm.

Figure 23 – Offshore wind farm. The turbulence created by the first layer of turbines is visible
thanks to the condensation.
Picture: Vattenfall Wind Power, Horns Rev wind farm, Denmark

1Indeed, wind turbines of the same farm are oriented toward the dominant wind. The first layer of turbines
profits of the full force of wind, but then the wind left behind is lower (about 5%). Moreover, it creates a
turbulent wake which damage the mechanical components in the long term (Maalouf, 2010). Wind farm layout
optimization consists in distributing the turbines on the site such that the total power provided is optimized
(taking into account these umbrella effects).
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Aeronautics is marked by a tremendous growth of traffic. The figure 24 shows how fast
the worldwide traffic increased between 1944 and 2016. It is expressed in revenue passenger-
kilometer. This measure of traffic is the product of the number of users (passengers paying
for the flight, crew members are not included) with the kilometers travelled. One can see the
steady increase, despite several crises affecting it. On the other hand, air transport safety
must be guaranteed. To deal with the increasing traffic, airport management must gain in
efficiency. Between two uses of the same runway, a minimum time is imposed because of the
turbulence created by the aircrafts. One of the limiting factors for the succession of landings
or take-off is thus the turbulence. The time imposed are standard thresholds depending on the
weight of the preceding aircraft. Measurement-driven management of runway should safely
reduce the time of unused runways.

Figure 24 – Evolution of the world passenger air traffic from 1950 to 2016. The traffic is
expressed in revenue passenger-kilometer.
Source: International Civil Aviation Organiation (ICAO), preliminary results of the 2016 study.

For aeronautics, the need of wind measurements increases because it warns about tur-
bulences threats. Critical phases are take-off and landing. Hence, in addition to ground
measurements, the first hundreds of meters must be measured. On airports, lidars are less
cumbersome than met mast (although eye-safety is limiting the laser use). With an appro-
priate scanning geometry, wind can be measured in 3D. Thanks to that, they can detect in
real time

• Wind direction in the runway and above.

• Turbulence in the wake of aircrafts.
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Aircrafts have to move against the wind for both take-off and landing. Some airports are
subject to reversals of the wind direction in the few ten meters of altitude (vertical wind
shear), or to reversal of the wind within the distance of the runway (horizontal wind shear, as
in figure 25). In such cases, the pilot must go around and attempt to land later, or elsewhere.
The wind direction is thus an important factor to manage the airport. Mapping the wind as
a lidar can do is thus a valuable tool for airport management.

Figure 25 – Illustration of horizontal wind shear. Landing and take-off are difficult in such
conditions and can be postponed.
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Organisation of the manuscript

The filtering method (so-called reconstruction) is interdisciplinary, and the sensitivity analysis
arrives on top of it. To clarify it the best I can, the manuscript is separated in height chapters
and three appendices:

1. Turbulence in the atmospheric boundary layer

2. Bayesian filtering

3. Instrument and material

4. Sensitivity analysis theory

5. Reconstruction of turbulent medium

6. Results of the sensitivity analysis

7. Exploration with 2-by-2 experiments

8. Penalised regressions to estimate Sobol indices

A. Theoretical background

B. Proofs

C. Complete results of the 2-by-2 experiments

The four first depict a goal-oriented state of the art in the different areas of research
involved in the reconstruction. Chapter 1 presents turbulence in a broad way and then
focus on questions raised by the Lagrangian representation in the reconstruction. Chapter
2 presents the filtering technique (genetic selection algorithm) through an introduction to
Bayesian filtering. Chapter 3 focuses on the lidar technology (principle, strength, limitations)
and the data used in this thesis. Chapter 4 explains how sensitivity analysis is carried out
(Sobol indices definition and estimation, Gaussian meta-model built).

The four last chapters present applications of the previous ones and the results. Chapter
5 explains the reconstruction method in details, set the testing framework and gives origi-
nal results about the reconstruction. Chapter 6 presents and comments the results of the
sensitivity analysis. Chapter 7 sustains the highlighted mechanisms with additional results
(so-called 2-by-2 experiments). Chapter 8 presents the testing of a new estimation way of
Sobol indices, with penalized regression, which makes insignificant indices go themselves to
exactly zero.

The three appendices complete the main matter. Appendix A set a common basis of
mathematical tool and notations for all readers, including students. Appendix B gives the
proofs of some results stated in the chapters 5, 6 and 8. Appendix C lists all the results
obtained with 2-by-2 experiments.
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Part I

Goal-oriented state-of-the-art
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Chapter 1

Turbulence in the atmospheric
boundary layer

Contents
1.1 Generalities in fluid mechanics . . . . . . . . . . . . . . . . . . . . . . . 9

1.1.1 Eulerian and Lagrangian description . . . . . . . . . . . . . . . . . . . . . 10

1.1.2 Navier-Stokes equations and Boussinesq approximation . . . . . . . . . . 11

1.2 Focus on turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.1 Reynolds system : equation of atmospheric turbulence . . . . . . . . . . . 13

1.2.2 The turbulence closure problem . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2.3 Kolmogorov spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3 Stochastic Lagrangian models . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3.1 Introduction to Lagrangian modelling . . . . . . . . . . . . . . . . . . . . 20

1.3.2 The stochastic Lagrangian model used . . . . . . . . . . . . . . . . . . . . 21

1.3.3 Closure of the model and local average . . . . . . . . . . . . . . . . . . . . 23

1.4 Turbulent kinetic energy estimation . . . . . . . . . . . . . . . . . . . . 27

1.4.1 Geometry of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.4.2 Average operators and TKE estimators . . . . . . . . . . . . . . . . . . . 28

1.4.3 Comparison of TKE estimators . . . . . . . . . . . . . . . . . . . . . . . . 32

1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.1 Generalities in fluid mechanics

This section aims to give the essential basis for the comprehension of atmospheric turbulence,
its context and its issues. Informations stated here variously come from reference books such
as Holton and Hakim (2012); Stull (1988) and Malardel (2005); de Moor (2006); Chassaing
(2000) (in French).
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1.1.1 Eulerian and Lagrangian description

A fluid can be described from 2 different referentials :

• From a Galilean referential : it is the Eulerian description. The fluid is described by
a fixed observer. Time and space are its coordinates. It is the most common point of
view because it has the advantage to handle easily boundary conditions and to be easier
to compare with observations.

• From a local referential : it is the Lagrangian description. The fluid is described by an
observer in the fluid, moving with the fluid (passively). Coordinates are then the time
and the initial position of the observer. It has the advantage to consider closed systems
(fluid particles), subject to external forces with no intern variations.

Dynamic and thermodynamic principles only hold for closed system. They are applied to
fluid particles : infinitesimal volumes of fluid.

Definition 1.1 (Fluid particle). A fluid particle is an infinitesimal volume of fluid containing
enough particles to correctly define statistical quantities (temperature, pressure...) but small
enough to consider that quantities as constant within the volume.

The size of a fluid particle has to be large compared with the mean free path of air
molecules. At standard pressure (1013 hPa) and temperature (20◦C), there are roughly
2.7·1019 molecules per cm3 and their mean free path is approximately 68 nm (according to
Jennings (1988), table 2 and 5). A fluid particle of 1mm will contain approximately 1016

molecules and be 5 order of magnitude larger than the mean free path. In a 20m3 volume of
atmosphere1, there are thus approximately 2·1010 fluid particles. Considering these order of
magnitude, it is reasonable to assume that there are an infinity of fluid particles in the probe
volume of lidar.

To describe fluid dynamics, we consider the closed system of a fluid particle that evolve
in a part of space D ⊂ R3. This part of space can be divided into a set of fluid particles. We
denote X(i, t) the position of the particle i at time t, and u(i, t) its speed. Let Ψ be a scalar
quantity of the fluid (for example Ψ can be the temperature, or the vertical velocity).

When given for one location and one time, it is an Eulerian variable:

ΨE : D × R+ −→ R
(x, t) 7−→ ΨE(x, t)

1The typical volume of representativity for a lidar measurement. In figure 1.6 gates are 50m large and the
measure is considered as valid in a section of 1m of diameter
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When given for one fluid particle and one time, it is a Lagrangian variable :

ΨL : I × R+ −→ R
(i, t) 7−→ ΨL(i, t)

where I is the set of particles index. The link between Eulerian and Lagrangian point of view
is given by the relation:

ΨL(i, t) = ΨE(X(i, t), t) (1.1)

Hence, the derivative in time for Lagrangian quantities (which is linked to external forces
through the 2nd law of Newton) can be expressed in Eulerian terms in this way2:

∂ΨL(i, t)
∂t

= ∂ΨE

∂t
+ ∂Xα(i, t)

∂t

∂ΨE

∂xα
(X(i, t), t)

= ∂ΨE

∂t
+ uEα (X(i, t), t)∂ΨE

∂xα
(X(i, t), t)

1.1.2 Navier-Stokes equations and Boussinesq approximation

Thermodynamic principles that are at the base of fluid dynamics only hold for closed system.
In fluids, the closed system is usually a fluid particle. Several thermodynamic principles apply
to a fluid particle :

• Mass conservation

• Momentum conservation (2nd law of Newton)

• Thermodynamic equilibrium

• Ideal gaz law

These equations involve six unknowns: the temperature T , the pressure P , the density of air
ρ, the eastward velocity u, the northward velocity v, the vertical velocity w. Only dry air
is considered. To ease the writing of equation, the three components of wind are numbered:
(u, v, w) = (u1, u2, u3). Using the link between Lagrangian variables (for which thermody-
namic principles hold) and Eulerian variables, we can write 6 equations for the 6 variables
(T, P, ρ, u, v, w) that are the Navier-Stokes equations (from de Moor (2006), page 56) :

∂ρ

∂t
= −ρ∂uα

∂xα
(1.2)

∀i ∈ {1, 2, 3}, ∂ui
∂t

+ uα
∂ui
∂xα

= −1
ρ

∂P

∂xi
+ ν

∂2ui
∂x2

α

+ ν

3
∂

∂xi

(
∂uα
∂xα

)
+ gδ3,i − 2εi,α,βΩαuβ (1.3)

2Einstein’s summation convention is used for Greek letter indices: xα :=
∑

α
xα.
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∂CvT

∂t
= −P

ρ

∂uα
∂xα

+ νθ
∂2T

∂x2
α

(1.4)

P = ρRT (1.5)

with δi,j =
{

1 if i = j

0 else and εi,j,k =


0 if i = j or i = j or j = k

−1 if j > k

1 if j < k

.

The remaining variables are the kinematic viscosity of air ν, the gravitational acceleration
g, the Earth rotation vector (Ω1,Ω2,Ω3), the specific heat capacity Cv, the thermal diffusivity
νθ and the specific air constant R.

Although Navier-Stokes equations provide a complete closed system of equations to de-
scribe fluids, it is not usable directly in practice. Assumptions are made to simplify the system
for a special application.

To study convection and atmospheric boundary layer, it is usually assume that the state
of atmosphere is "not too far" from a hydrostatic state at rest (Ψ = Ψ0 + Ψ1, for Ψ being
T, P, ρ, u, v, w). The temperature variable T is modified into the potential temperature θ =
T
(
P0
P

)2/7
(which has the advantage to be invariant by adiabatic compression). The use of

potential temperature θ instead of the temperature T is so common that it is frequent to call
θ "the temperature". This yields to the Boussinesq system (still from de Moor (2006), page
63):

∂uα
∂xα

= 0 (1.6)

∀i ∈ {1, 2, 3}, ∂ui
∂t

+ uα
∂ui
∂xα

= − 1
ρ0

∂p1
∂xi

+ ν
∂2ui
∂x2

α

+ β(θ − θ0)δ3,i − 2εi,α,βΩαuβ (1.7)

θ

∂t
+ uα

∂θ

∂xα
= νθ

∂2θ

∂x2
α

(1.8)

ρ1
ρ0

= −θ − θ0
θ0

(1.9)

This system is at the basis of atmospheric boundary layer description, because this layer
ground-driven by definition and consequently, leading fluxes are vertical. But it is still a
deterministic partial differential equation, while turbulence is known for its randomness.
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1.2 Focus on turbulence

1.2.1 Reynolds system : equation of atmospheric turbulence

A fluid is called "turbulent" by opposition to another state : "laminar" fluid. Although it
seems clear for human eye what is turbulent and what is not, the criterion to distinguish
turbulent fluid from laminar fluid is quite fuzzy. It is based on the Reynolds number.

Definition 1.2 (Reynolds number).

With words The Reynolds number is a dimensionless number, ratio in order of magni-
tude between the advective transport and the diffusive transport in a fluid.

Formally With the notations

– L : characteristic length scale of the flow
– U : characteristic speed of the flow
– ν : cinematic viscosity of the fluid

Re = U · L
ν

Figure 1.1 depicts a von Kármán vortex street created by the Canaries islands in a tur-
bulent flow. Such eddies are the signature of a punctual obstacle in a turbulent flow. On this
example, the characteristic length scale and the characteristic speed of the flow are illustrated
in the picture. The Reynolds number of the flow is deduced from them. A fluid with "large"
Reynolds number is said turbulent, and a fluid with "low" Reynolds number is said laminar.
But the thresholds for "large" and for "low" are different. For example3, in a flow in a pipe
of given diameter, the threshold for "low" Reynolds number is Re < 2300 but the threshold
for "large" Reynolds number is Re > 4000. In between, the fluid has mixed characteristics.
Moreover, "characteristic" parameters (length scale and speed) can be subject to discussion
for some flows. For example, in wall bounded flows, one can define a local Reynolds number
with boundary layer characteristics and a global Reynolds number with the freestream char-
acteristics. That’s why the contour of turbulence us quite fuzzy.

The particularity of turbulence is its rapid random variations that introduce a new for-
malism. Parameters are split in 2 components :

Ψ = Ψ̄ + Ψ′ (1.10)

where ·̄ is an average operator satisfying the Reynolds axioms:

3From Wikipedia (Reynolds number page). It quotes Holman, "Heat transfer" (2002), but this reference is
not accessible.
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Figure 1.1 – MODIS image of the Canaries and Madeira islands creating a turbulent flow
downstream. Characteristic length and speed involved in the Reynolds number estimation
are highlighted (original image from NASA, public domain).
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Linearity : Ψ + Φ = Ψ̄ + Φ̄

Commutativity with derivative : ∂Ψ
∂x = ∂̄Ψ

∂x

and integral :
∫

Ψ =
∫

Ψ̄

Idempotence : ΨΦ̄ = Ψ̄Φ̄

Table 1.1 – Reynolds axioms for the average operator.

In the atmospheric boundary layer, we neglect the variation of ρ since we are in a small
portion of the densest part of the atmosphere. To relax this assumption, it is possible to
consider ρΨ/ρ̄ (so-called Favre average) instead of Ψ̄. We also give up the Coriolis force, be-
cause it is really small for kilometric scales. By applying the average operator to Boussinesq’s
system we get the Reynolds system (de Moor, 2006, p.125).

∂uα
∂xα

= 0 (1.11)

∀i ∈ {1, 2, 3}, ∂ui
∂t

+ ∂uαui
∂xα

+ ∂u′αu
′
i

∂xα
= − 1

ρ0

∂p1
∂xi

+ ν
∂2ui
∂x2

α

+ β(θ − θ0)δ3,i (1.12)

θ

∂t
+ ∂uαθ

∂xα
+ ∂u′αθ

′

∂xα
= νθ

∂2θ

∂x2
α

(1.13)

In this system, one can see second order terms appear : u′αu
′
i and u′αθ

′. They make
this system unclosed because they are new unknowns. Although it is possible to write new
equations about them by crossing Boussinesq (∂Ψ/∂t) and Reynolds (∂Ψ̄/∂t) systems to get
the fluctuation equations (∂Ψ′/∂t), the non-linear terms will bring third order terms that let
the system unclosed. It is done in de Moor (2006), p.129. This problem is known as the
turbulence closure problem (Malardel (2005) p. 398, Stull (1988) p.197).

1.2.2 The turbulence closure problem

Many approaches are possible to bypass the closure problem. Most of them link empirically
high order moments to lower order moments with a formula of various complexity. Depending
on the order of the highest moments fully described, the closure methods are classified in zero,
first or second order closure (Stull, 1988, p. 199). For example, first order closure assume a
relationship of the type

u′iΨ′ = −K
∂Ψ
∂xi

(1.14)

with K either a given constant or depending of others known parameters, and Ψ a scalar
quantity.

A variation of these methods is to build empirical equation not for all high order moment
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but only for ones that have a physical meaning. The advantage is double : reduce the number
of equations and build a physically interpretable equation. An interesting parameter made
from second order moments is the turbulent kinetic energy (TKE) :

Definition 1.3 (Turbulent kinetic energy).

With words Turbulent kinetic energy is half the sum of wind variance on each compo-
nent. It represents the kinetic energy due to turbulent fluctuations.

Formally
k = 1

2
(
u′2 + v′2 + w′2

)
The stronger the turbulence, the stronger the fluctuations and the higher the TKE. It thus
a good tracer of turbulence, for which we can derive a prognostic equation from Reynold’s
system (see de Moor (2006) p. 275 and Stull (1988) p. 214, Chassaing (2000) p.158) :

∂k

∂t
= −w′u′∂ū

∂z
− w′v′∂v̄

∂z
− ∂

∂z

(
w′k + w′(p/ρ0)

)
+ βw′θ′ − ε (1.15)

with ε the eddy dissipation rate (EDR). In this kind of closure, the factor K is supposed of
the form

K = a · lm
√
k (1.16)

with a a constant, lm the mixing length and k the TKE. Other second-order moments are
retrieved with the one-order closure, but the TKE (which is a second-order term) is explicitly
calculated. It is thus called a 1.5-order closure.

Some new terms have been introduced in the 1.5-order closure but not discussed. They
are the mixing length lm and the eddy dissipation rate ε.

The mixing length lm is a characteristic length of the flow. The difficulty is to make a
rigorous interpretation of it, and thus its estimation is quite arbitrary. Nevertheless, it can be
seen as the maximum length of excursion of a fluid particle moving vertically by consuming
its turbulent kinetic energy. This interpretation is concrete and also yields to accessible
calculations:

lm =
√
lupldown with k(z) =

∫ z+lup

z
β(θ̄(z)− θ̄(z′))dz′ =

∫ z

z−ldown
β(θ̄(z′)− θ̄(z))dz′

It is known as the Bougeault and Lacarrere (1989) mixing length.

The eddy dissipation rate ε is the rate of dissipation of turbulent kinetic energy in the
absence of other source or sink (advection, friction...). It is also equal to the rate of energy
transfer from large eddy to smaller eddies. The establishment of this equation from Reynolds’
system yields to an expression of ε at high Reynolds number (de Moor (2006) p.138 and 280,
Chassaing (2000) p.158) that we use as definition.
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Definition 1.4 (Eddy dissipation rate).

With words Eddy dissipation rate is the rate of dissipation of turbulent kinetic energy
in the absence of other source or sink (advection, friction...).

Formally

ε = ν
∂u′α
∂xβ

∂u′α
∂xβ

= ν

(
∂u′1
∂x1

)2
+ ν

(
∂u′1
∂x2

)2
+ · · ·+ ν

(
∂u′3
∂x3

)2

It is an important term for energetics of turbulence. It is known, both theoretically and em-
pirically that turbulence energy is spread continuously among scales (it is even a part of the
definition of the turbulence phenomenon for Chassaing, (Chassaing (2000) p.9). In theoreti-
cal description of turbulence energetics (such as Kolmogorov’s theory of 1941, (Kolmogorov,
1941)), EDR is often used as the rate of transfer from large eddy to small eddies, and to
smallest eddies to dissipation in heat.

1.2.3 Kolmogorov spectrum

Turbulence is characterized by superimposition of eddies of different sizes. Large eddies are
created by large scale forcings (generalized surface heating, gravity waves, mesoscale wind
shear...) and they are splitting into smaller ones, until they reach a critical size where they
are dissipated by viscosity. All the generations of eddies are superimposed in the fluid, as it
is illustrated in figure 1.2. As a consequence, energy is spread continuously among all scales.
Frisch et al. (1978) describe turbulence in terms of eddy generations. They denote l0 the
largest eddy in the fluid (l0 is the boundary layer height) and the n-th generation of eddies
is of size

ln = l02−n

Figure 1.2 – Illustration of eddies in turbulence. Big eddies generate smaller eddies and they
are all mixed in the same volume.

The n-th generation of eddies has ln for characteristic size, vn for characteristic velocity,
tn for turnover time and En for kinetic energy. These quantities are linked by the following
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relations (' stands for equality in order of magnitude).

En ' v2
n

vn ' ln/tn

The rate of transfer from generation n to generation n+ 1 is denoted εn. From the previous
notations we can state

εn ' En/tn ' v3
n/ln

At each time unit, a proportion εn of eddies of generation n will be split in two smaller eddies
of generation n+ 1. This transfer is repeated for all scales.

Kolmogorov, in its original paper (Kolmogorov, 1941), makes the assumption that εn = ε

does not depend on n. From this assumption ensues an expression of the Eulerian structure
function (so-called 2/3 law, Frisch (1995); Monin and Yaglom (1963)):

E
[
(Ut,x+r − Ut,x)2

]
= C0ε

2/3r2/3 (1.17)

with Ut,x the Eulerian wind, x a point in the fluid and r a displacement from that point.

It is important to precise the equation (1.17) is valid for Eulerian wind. Indeed, for
Lagrangian wind, the result is not the same (Yakhot, 2008; Mordant et al., 2001):

E
[
(Vt+τ − Vt)2

]
= C0ετ (1.18)

with Vt the Lagrangian wind (Vt = Ut,Xt). Another difference between equations (1.18) and
(1.17) is that one is a spatial structure function, while the other is time structure function.
The constant C0 is called the Kolmogorov’s constant. Although presented as universal, many
studies come out on different values (DU, 1997; Du et al., 1995). In this study, the chosen
value is C0 = 2.1, according to Pope (1994). Its influence will be assessed in the sensitivity
analysis.

An eddy of size l would be described from the Eulerian point of view. Its kinetic energy
is given by the equation (1.17) by taking x the center of the eddy and r = l:

E(l) = C0(εl)2/3 (1.19)

with l the characteristic size of the eddy of kinetic energy E(l) and C0 the so-called Kol-
mogorov constant. The rate of transfer from different size ε is assumed to not depend on the
size (see Kolmogorov (1941); Frisch et al. (1978)). By taking the Fourier transform of 1.19,
we get the -5/3 spectrum:
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E(k) =
∫ +∞

0
E(l)e−ilkdl

=
∫ +∞

0
C0(εl)2/3e−ilkdl

= C0ε
2/3
∫ +∞

0

(
α

k

)2/3
e−iα

dα

k
= C ′0ε

2/3k−5/3

The energy is coming in at the largest scales, of size comparable to boundary layer height.
With common order of magnitude (l0 ' 1km, v0 ' 1m·s−1 and ν ' 10−5m2·s−1) , one can
estimate the Reynolds number at that scale:

Re0 = v0l0
ν
' 108

This very large Reynolds number confirms the atmospheric boundary layer is turbulent. At
the smallest scales, the viscosity become important and dissipates the eddies in heat. The
scale at which the eddies are dissipated is called the Kolmogorov scale and denoted lK . From
the interpretation of the Reynolds number, it should be close to 1 at such scale. Moreover,
the characteristic speed can be expressed with the relation ε ' v3

K/lK . It is a way to estimate
the Kolmogorov scale:

ReK = 1 ⇐⇒ vK lK
ν ' 1

⇐⇒ (εlK)1/3lK
ν ' 1

⇐⇒ lK '
(
ν3

ε

)1/4

with common order of magnitude (ε ∼ 10−1m2·s−3, ν ∼ 10−5m2·s−1), it gives lK ' 3mm. All
the scale between l0 and lK represent the inertial range of turbulence. In the inertial range,
the wind spectrum decreases continuously (it is represented in semilog-scale in figure 1.3).
This a characteristic feature of atmospheric turbulence and a very efficient way to check if
measurements are noisy. If the spectrum is flat at high frequencies, it is the sign that some
noise remains in the signal.
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Figure 1.3 – Kolmogorov spectrum: wind spectrum has a steady -5/3 slope in the inertial
range. On the x-axis are frequencies in log scale, on the y-axis is power in decibels.

1.3 Stochastic Lagrangian models

1.3.1 Introduction to Lagrangian modelling

The principle of a Lagrangian model is to describe the fluid motion by the movement of
a set of particles. It is opposed to Eulerian models, such as grid points models used in
numerical weather prediction, which describe the fluid by a set of "probe" where the fluid
speed is known. Even though Eulerian point of view is the most in use in fluids dynamics
(it matches the constraint of having instrument at fixed location and boundary conditions),
Lagrangian modelling still has attractive features. It is very useful to describe the propagation
of pollutants (Rotach, 2001) or reactive compounds (Pope, 1985). Reversely, they are used
to build footprint models (Schmid, 2002). They are also used in more micro-scale processes,
such as inter-particles collision in a turbulent flow (Sommerfeld, 2001). For a historical review
of Lagrangian modelling see Thomson and Wilson (2013). For a more technical review, see
Wilson and Sawford (1996).

We consider only 1-dimensional model, since we do not use higher dimension in this work,
but higher dimensional models are written very similarly Pope (1985). Our instrument mea-
sures only vertical velocity, hence a 1-dimensional model is enough. All stochastic Lagrangian
models are of the form 1.20.{

dXt = Vtdt

dVt = a(Xt, Vt, t)dt+ b(Xt, Vt, t)dBt
(1.20)
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The first equation tells the particles are displaced according to their speed. The second
equation accounts all the forces acting on the particle. The term a(Xt, Vt, t) is dedicated to
larger forces, which induce a global trend. The term b(Xt, Vt, t) is dedicated to small scales
forces, which have no global trend by add dispersion among fluid particles (dBt is a Brownian
motion infinitesimal increment).

The study of Lagrangian models starts in the early 20th century, with the Langevin equa-
tion mentioned in the appendix A. The Langevin equation was at the origin the application
of the second Newton’s law to a large particle dropped into a fluid at rest. The innovation
of Langevin was to introduce a "random force" which describe the microscopic effects of the
surrounding fluid. Later it has been formulated in terms of stochastic processes, as it has
been done in the appendix A (equation A.18). The Langevin equation is recalled here:

dVt = − 1
TL
Vtdt+ σdBt

We have seen that the process solution of this stochastic differential equation is the
Ornstein-Ulhenbeck process. Its average is an exponential function decreasing at the rate
TL and its variance is bounded. Asymptotically (that is to say after few TL), it is stationary
and ergodic. It means that the stochastic process can be approached by a single realisation,
which is what one get from measurements. The asymptotic variance has been calculated
in the appendix A: σ2

∞ = σ2 TL
2 . It can be used as parameter instead of σ. The Langevin

equation is thus written as

dVt = − 1
TL
Vtdt+

√
2σ2
∞

TL
dBt (1.21)

The advantage of this change is that σ2
∞ is more interpretable and accessible under physical

assumptions. Indeed σ2
∞ stands for the stationary variance of one component of the wind.

When the turbulence is 3-dimensional and isotropic, it is linked to the TKE: σ2
∞ = 1

3(u′2 +
v′2 + w′2) = 2

3k.

1.3.2 The stochastic Lagrangian model used

The stochastic Lagrangian model used in the recontruction has been contructed by Baehr
(2008) from the model of Pope (2000) (also Das and Durbin (2005) for the 3-dimensional
version). Pope establishes his 1-dimensional model from a Langevin equation (equation 21 of
Pope (1994)).

dVt = − 1
TL
Vtdt+

√
2σ2
∞

TL
dBt

From Mordant et al. (2001) (equation 4) the Lagrangian structure function in the inertial
domain is expressed with C0 the Kolmogorov’s universal constant and the eddy dissipation
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rate ε:
E
[
(Vt+s − Vt)2

]
= C0εs (1.22)

In the appendix A, we have seen the variogram of this process is

γV (s) = σ2
∞

(
1− e−

s
TL

)
' σ2

∞
s

TL

The two results are consistent (linear variogram) when s� TL. We identify the terms to get
an expression of TL. If the turbulence is isotropic, the stationary variance is linked to the
TKE: σ2

∞ = 2
3k. Thus, the final expression for TL is

TL = 4k
3C0ε

(1.23)

The Langevin equation is thus written as follow:

dVt = −3
4C0

ε

k
Vtdt+

√
C0εdBt (1.24)

Then, Pope makes three changes on the equation 1.24 to get his model.

• Pressure force is taken into account.

• The restoring term no longer restore to 0 but to the Eulerian average wind 〈Ut,Xt〉.

• The coefficient 3
4C0 of the restoring term is changed into 1

2 + 3
4C0.

The resulting model is given in Pope (1994), equation 32:

dVt = −〈∇pt〉 dt−
(1

2 + 3
4C0

)
ε

k
(Vt − 〈Ut,Xt〉) dt+

√
C0εdBt (1.25)

This model is initially built for 3-dimensional homogeneous isotropic tubulence. In the
atmosphere, the vertical component is much different than the two horizontal. The stratified
model of Das and Durbin (2005) takes it into account. Baehr (2008) uses both Pope’s and Das-
Durbin’s to make the 3-dimensional model used for the reconstruction. The difference with
Das-Durbin’s is that the temperature evolution has been removed since the reconstruction
filters only wind. This model is used in Baehr (2010); Rottner (2015); Rottner et al. (2017);
Suzat et al. (2011). In this work, we consider only the vertical component. Hence the model
used is very close to 1.25, at the difference that the pressure force is replaced by a term At
which accounts for all external forces acting on the vertically moving particles (flottability,
pressure). The coefficient of the restoring term is denoted C1 =

(
1
2 + 3

4C0
)

and will be
considered as an independent constant. Thus, the model in use for this work is

dVt = −Atdt− C1
ε

k
(Vt − 〈Ut,Xt〉) dt+

√
C0εdBt (1.26)

It is applied to guide independently a set of N particles. Each particle has a speed
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and position (Xi
t , V

i
t ) which is realisation of the random variable (Xt, Vt). For any particle

i ∈ [[1, N ]], its speed and position are given by{
dXi

t = V i
t dt

dV i
t = −Aitdt− C1

εi

ki

(
V i
t −

〈
Ut,Xi

t

〉)
dt+

√
C0εidBt

(1.27)

This model is in continuous time. In practice, it is used to move from one time step to the
next. The discretization of time is done using an explicit Euler scheme. It induces an error,
that we suppose Gaussian of standard deviation σX added on the position of the particles.
Consider we have Nt time steps. For any t ∈ [[1, Nt]] the discrete time model is given by:{

Xi
t+1 = Xi

t + V i
t ∆t+ σXζXt

V i
t+1 = V i

t −Ait∆t− C1
εi

ki

(
V i
t −

〈
Ut,Xi

t

〉)
∆t+

√
C0εi∆tζVt

(1.28)

with ζXt and ζVt centred Gaussian random variables of variance 1.

Some terms are not explicit in this model: the large scale action At, the eddy dissipation
rate ε, the turbulent kinetic energy k and the Eulerian wind average 〈Ut,Xt〉. The next section
explains how they are estimated from the set of particles.

1.3.3 Closure of the model and local average

Some quantities in the Lagrangian model have not been explicited yet. There are four of
them:

• The large scale effect At.

• The eddy dissipation rate ε.

• The Eulerian average wind 〈Ut,Xt〉.

• The turbulent kinetic energy k.

A solution to close the model is to take such quantities from outside of the particle system.
This is what is done by Rottner et al. (2017) to get sub-grid estimation of turbulence. The
large scale effect At and the eddy dissipation rate ε are taken from a large scale grid points
model and the turbulent kinetic energy k is estimated from the particles, which gives the sub-
grid contribution to turbulence, as illustrated by the figure 1.4. In the paper, the Meso-NH
model is used at two different resolutions: a coarse one (∆x = 160m) which stands for the
large scale, and a fine one (∆x = 40m), used for the assessment of the sub-grid contribution.
See figure 2 of the paper. The purpose of the paper is to perform downscaling from a grid
point model to sub-grid particle system.

The purpose of reconstruction is different: get fast estimate of wind and turbulence from
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Figure 1.4 – For downscaling applications, At and ε are taken from a grid point model and the
sub-grid particle system is driven by these commands. Particles provide sub-grid contribution
k and Vt to turbulence and wind. Figure from Rottner et al. (2017).

lidar measurement. No model is involved, hence the commands of the model must be esti-
mated from the particle system.

The turbulent kinetic energy estimation will be treated in a dedicated section since there
are many things to say about it. First, we treat the Eulerian average wind, then the large
scale effect, and eventually the eddy dissipation rate.

1.3.3.1 Eulerian average wind

The problem to estimate the Eulerian average wind is that the particle system provides
only Lagrangian quantities. The question is how to estimate Eulerian quantities with only
Lagrangian information? It has been addressed by Baehr (2010) with the formalisation of
acquisition processes. The couple (Xt, Ut,x) is an acquisition system for the random field of
velocity (definition 1.1 of the paper). The speed of particles Vt = Ut,Xt is an acquisition
process of the velocity field (definition 1.2 of the paper). The Eulerian average wind, denoted
〈Ut,Xt〉 is actually the expectation of the Eulerian velocity field at the point where is the
particle.

〈Ut,Xt〉
def.= E [Ut,x|Xt = x]
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This expectation can be expressed with the Lagrangian quantities Xt and Vt knowing that
Vt = Ut,Xt .

E [Ut,x|Xt = x] = E [Vt|Xt] =
∫
vP (Vt ∈ dv|Xt)

with the probability P (Vt|Xt) given by Bayes’ formula:

P (Vt ∈ dv|Xt = x) = P (Vt ∈ dv,Xt ∈ dx)∫
P (Vt ∈ dv,Xt ∈ dx)

The problem with this expression is that it is impossible to estimate if there is no particles
on a given point of the space. Ideally, with N = +∞ such that there are particles at every
point in the space, then 〈Ut,Xt〉 is the average speed of all the particles located at the point x.
In practice, even with N very large, there are points uncovered by particles. To bypass this
problem, the condition Xt = x is relaxed with a regularisation kernel. That is to say, instead
of computing the average of all the particles located at the point x, we compute the average of
all the particles in a neighbourhood of x. Baehr (2010) suggested a Gaussian neighbourhood,
as represented in figure 1.5, in accordance with Kraichnan’s turbulence theory.

Figure 1.5 – Illustration of the Gaussian local average on a 2-dimensional system of particles.

The regularisation kernel used is thus a Gaussian function with standard deviation `.

Φ`(x, y) = exp
(
−(x− y)2

2`2

)
(1.29)

The Eulerian average wind is then a weighted average on all the particles.

〈Ut,Xt〉
` =

∫
vΦ`(Xt, x)P (Vt ∈ dv,Xt ∈ dx)∫
Φ`(Xt, x)P (Vt ∈ dv,Xt ∈ dx)

The regularisation fades when ` gets smaller:

〈Ut,Xt〉 = lim
`→0
〈Ut,Xt〉

`
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Since the particle system consists in a given number of particles, this term is estimated
with the particles available. Given a particle of number i, the Eulerian average wind is
approached by the local average on particles around

〈Ut,Xt〉
` '

〈
V i
t

〉`
=
∑N
j=1 V

j
t Φ`(Xi

t , X
j
t )∑N

j=1 Φ`(Xi
t , X

j
t )

(1.30)

In the rest of this manuscript, the notation
〈
V i
t

〉` will be used instead of 〈Ut,Xt〉
` in the

Lagrangian model. Although it hides the physical construction of the model, it better reflects
what is done in practice.

1.3.3.2 Large scale effect

The large scale effect At should be given by external source of information. Since no other
source of information is available, At must have a value which is consistent with the par-
ticle system. The solution proposed by Baehr (2010) is to take the average of the velocity
increments (equation 4.3 of the paper). Indeed, if one takes the expectation of the stochastic
Lagrangian model, one gets:

E [dVt] = −E [At]︸ ︷︷ ︸
=At

dt− C1E
[
ε

k

(
Vt − 〈Vt〉`

)]
︸ ︷︷ ︸

'0 if `→0

dt+ E
[√

C0εdBt
]

︸ ︷︷ ︸
=0

The first term is deterministic. The second term goes to zero if the regularisation kernel is
well set. The third term is centred. In the end, only the large scale effect remains. To get
it, we only have to estimate E [dVt]. In the discrete time model, dVt is approached by the
increment of one time step. Such increment is known for all particles, thus the expectation
is approached by the average over many particles. As the large scale effect may change with
height, we only average increment of particles in at the same vertical layer.

With the notations introduced before, the estimation of the large scale effect is written:

Ait = − 1
∆t

∑
j∈B(z(i),t)

(V j
t − V

j
t−1)

|B(z(i), t)|

1.3.3.3 Eddy dissipation rate

For the eddy dissipation rate, the problem is the same as for the large scale effect. In the
absence of external source of information, a consistent value must be taken. In the generalized
Langevin model (equation 1.20), the following relationship is commonly used:

E
[
(dVt)2

]
= b(Xt, Vt, t)2 (1.31)
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Since the term b(Xt, Vt, t) is identified thanks to the equation 1.26, the equality 1.31 is written
in discrete time as

E
[
(∆Vt)2

]
= C0ε∆t

The expectation is then approached by an ensemble average on the particles. As for the
large scale trend, each vertical layer is distinguished. Thus, the following estimation for ε is
consistent with the model:

εit = − 1
C0∆t

∑
j∈B(z(i),t)

(V j
t − V

j
t−1)2

|B(z(i), t)|

Other closure exist: Bernardin et al. (2009); Suzat et al. (2011) use a so-called k−ε closure
(Launder and Spalding, 1974), based on dimensional analysis, it links the EDR and the TKE
through the relation

ε = Cε
lm
k2/3

with Cε a constant and lm a characteristic length (the mixing length is often in use). The
resulting EDR depends on t. Although is has been omitted previously, this notation will be
conserved.

1.4 Turbulent kinetic energy estimation

We have seen that the turbulent kinetic energy (TKE) is a valuable quantity to measure
when one studies turbulence (definition 1.3). It is usually estimated by the variance on
the time series of wind measurements. By its representation of the fluid with particles, the
reconstruction system allows alternative computation that are still to qualify. Hence, beside
TKE estimation from time series, this section broaches estimation of TKE from particle
system. Some of this material was submitted in Rieutord et al. (2016).

1.4.1 Geometry of the problem

In this work we consider only vertical staring lidar. The wind is measured at several heights
(the resulting value is an average over a given layer, these layers are numbered according
to their vertical level; see chapter 3 for more detail on the instrument). As the lidar stays
at the same place, the measurements are Eulerian. The lidar provides times series at each
vertical level V o(z, t) ("o" for observation). In addition to the measurements, numerical
particles (Xi, V i)[[1,N ]] are considered in the probe volume. They stand for fluid particles and
are leaded by the stochastic Lagrangian model presented in the previous section. Particles,
vertical levels and lidar are represented in the figure 1.6. In the whole manuscript, we adopt
the following notations:

• Nz is the number of vertical levels.
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• z ∈ [[1, Nz]] is the vertical level number.

• ∆z is the size of a vertical level.

• z(i) =
⌊
Xi−Xmin

∆z

⌋
+ 1 is the vertical level number of particle i.

• B(z) = [Xmin + (z− 1)∆z,Xmin + z∆z[ is the layer numbered with the vertical level z.

• B(z, t) =
{
i, Xi

t ∈ B(z)
}
is the set of particles at the vertical level z at time t.

Figure 1.6 – Scanning geometry and vocabulary.

1.4.2 Average operators and TKE estimators

1.4.2.1 Time average

TKE profiles are obtained by computing the variance on a time series of wind measurements.
The length of the time series required to get a single estimate of TKE is still an open ques-
tion. It is 30 minutes in Darbieu et al. (2015), 15 minutes in Tucker et al. (2009), 3 or 5 min
(depending on instrument) in O’Connor et al. (2010). This question is related to the station-
arity and ergodicity properties, introduced in the appendix A. If the integration time is short,
stationarity is a weak assumption but ergodicity is a strong assumption. If the integration
time grows, it ensures ergodicity but stationarity becomes a strong assumption. Lenschow
et al. (1994) distinguish the error due to the use of a time average instead of an ensemble
average (so-called systematic error) and the error due to the use of a single realization (so-
called random error). They only consider stationary processes, they conclude the longer the
better (to ensure ergodicity), with a 1/τ decrease of the error. Pichugina et al. (2008) show
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the non-stationarity is a severe issue for stable conditions. Because of it, they fail to apply
Lenschow’s results. Germano (1992) discuss the question in the framework of LES. In any
case, a time average operator is used.

Definition 1.5 (Time average).

With words Given an integration time τ , the time average operator transforms any L2

function of time defined on a subdivision of resolution ∆t < τ into another L2 function
defined on a subdivision of resolution τ .

Formally Let τ be the integration time. Let T (α) = {t1, t2, ... such that ∀i, ti+1 − ti =
α} be a subdivision of time of resolution α. Let φ ∈ L2(T (∆t)) a time function known
on T (∆t) with ∆t < τ . Then its time average φτ is defined on L2(T (τ)).

φ
τ : T (τ) −→ R

t′ 7−→ φ
τ (t′) = 1

τ

∑t′+τ
t=t′ φ(t)

Thus the time average is defined as

•τ : L2(T (∆t)) −→ L2(T (τ))
φ 7−→ φ

τ (t′) = 1
τ

∑t′+τ
t=t′ φ(t)

(1.32)

The time average has thus an effect on the resolution: the time average of a vector of size Nt

will be of size Nt
∆
τ . This average operator is the one classically used, because it requires only

a time series of measurement, that any device provides. Using the time average operator, the
TKE is estimated on time series and designed as time TKE (TTKE).

Definition 1.6 (TTKE: time turbulent kinetic energy).

kT (z, t′) = 1
2
(
V o(z, t)− V o(z, t)τ

)2τ

1.4.2.2 Spatial average

With the use of a Lagrangian model, several independent particles are at different location at
a given time, as shown in figure 1.6. Unlike grid points, which are always at the same location,
particles move from a time step to another. Hence, instead of computing the variance on the
time series of the wind at a fixed location, one can define an area and compute the variance
of the speed of the particles in this area.
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Definition 1.7 (Spatial average).

With words Given an vertical level z of size ∆z, the spatial average is the average over
all the particles at this vertical level.

Formally Let φ ∈ L2([[1, N ]]) be a function known on the set of particles (Xi, φi)[[1,N ]]
and B(z) =

{
i, Xi ∈ B(z)

}
. Then its spatial average 〈φ〉 is defined on L2([[1, Nz]]).

〈φ〉 :
[[1, Nz]] −→ R

z 7−→ 〈φ〉 (z) = 1
B(z)

∑
i∈B(z) φ

i

Thus the spatial average is defined as

〈•〉 :
L2([[1, N ]]) −→ L2([[1, Nz]])

φ 7−→ 〈φ〉 (z) = 1
B(z)

∑
i∈B(z) φ

i (1.33)

The spatial averaging also reduces the resolution: from one information for each particles,
we got one information for each vertical level. This way of estimation gives a spatial TKE
(STKE).

Definition 1.8 (STKE: spatial turbulent kinetic energy).

kS(z, t) = 1
2

〈(
V i
t −

〈
V i
t

〉)2
〉

1.4.2.3 Local spatial average

To compare Eulerian quantities to Lagrangian quantities a regularisation kernel was intro-
duced in the previous section. Moreover, another spatial average has been presented in the
description of the Lagrangian model. This other spatial average that all particles into ac-
count, but weight them with a Gaussian (see figure 1.5). Depending on the parameter `, this
average is more local than the previous one. Thus it will be designed as local spatial TKE
(LSTKE).
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Definition 1.9 (Local spatial average).

With words Given a location x, the local spatial average at this point is the average
over all the particles with a Gaussian weight centred on x.

Formally Given a location x and ` > 0. Let φ ∈ L2([[1, N ]]) be a function known on
the set of particles (Xi, φi)[[1,N ]] and Φ`(x, y) = exp

(
− (x−y)2

2`2
)
. Then its local spatial

average 〈φ〉` is defined on L2([Xmin, Xmax]).

〈φ〉` :
[Xmin, Xmax] −→ R

x 7−→ 〈φ〉` (x) =
∑N
j=1 φ

jΦ`(x,Xj
t )∑N

j=1 Φ`(x,Xj
t )

Thus the local spatial average is defined as

〈•〉` :
L2([[1, N ]]) −→ L2([Xmin, Xmax])

φ 7−→ 〈φ〉` (x) =
∑N
j=1 φ

jΦ`(x,Xj
t )∑N

j=1 Φ`(x,Xj
t )

(1.34)

Conversely to the two previous, this operator does not reduce the resolution. It even enhances
it in some sense: |[Xmin, Xmax]| > |[[1, N ]]|. The reason is that it is not a proper average
operator:

〈
〈φ〉`

〉`
6= 〈φ〉`, while 〈〈φ〉〉 = 〈φ〉 and φ

τ τ = φ
τ . None of the three operators

presented satisfies the idempotence property of Reynolds’ axioms (see table 1.1). But the
local spatial average is not even a projection. Nevertheless, it converges towards the Eulerian
average when ` goes to zero.

The stochastic Lagrangian model needs the TKE at the location of the particles. Hence,
the local spatial average is applied only at the location (Xi)[[1,N ]]. In the Lagrangian model,
there is one value of TKE for each particle. For the turbulence estimation, we keep one value
per vertical level. The resulting TKE estimator, the local spatial TKE (LSTKE) is thus:

Definition 1.10 (LSTKE: local spatial turbulent kinetic energy).

kLS(z, t) = 1
2

〈〈(
V i
t −

〈
V i
t

〉`)2
〉`〉

Combining the time average operator and the spatial average operator, an additional TKE
estimator have been defined. It is the temporal variance of the particles speed, along their
trajectory. To get a single estimate by vertical level, the spatial average is applied next. It is
denoted kT ′ , the time TKE on particles (T’TKE).

Definition 1.11 (T’TKE: local spatial turbulent kinetic energy).

kT
′(z, t) = 1

2

〈(
V i
t − V i

t

τ)2τ
〉
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This estimator will be useful in the comparison.

1.4.3 Comparison of TKE estimators

Four TKE estimates have been defined. The time series of such estimates at a given vertical
level is shown in figure 1.7. The integration time was set to τ = 10 minutes. The interaction
length was set to ` = 10 meters. One can see a clear difference of behaviour: estimates using
time variance (TTKE and T’TKE) have a similar shape, evolving slowly in comparison to
estimates using spatial variances (STKE and LSTKE). The effect of average on resolution is
visible too: spatial variances are at much higher resolution than time variance. Nevertheless,
it does not look comparable.

Figure 1.7 – Time series of the four TKE estimates at a given vertical level. Time variances,
TTKE (black) and T’TKE (yellow), and spatial variances, STKE (blue) and LSTKE (red),
are represented.

There is a disconnection between temporal evolution and spatial evolution. The connec-
tion between temporal evolution and spatial evolution in turbulence is usually made thanks
to the Taylor’s frozen turbulence hypothesis. This hypothesis states the eddies are advected
by the flow such that measuring at t and t+ ∆t is the same as measuring the eddies at x and
x−∆x. It holds only if the mean wind is dominant over the fluctuation:

w = w + w′ with w � w′

But the mean vertical component of the wind in the atmosphere is zero in the absence of
convection or at large scale (w = 0). Since the lidar measures only the vertical component of
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the wind, there is no chance for the Taylor hypothesis to be satisfied. The eddies are advected
by horizontal wind (unreachable by this lidar), thus eddies at z and z + ∆z are decorrelated.
It explain why spatial variances are underestimated compared to the time variances. This is
sustained by figure 1.8, which depicts the particles at a given vertical level and the trajectory
of one of them picked at random. One can see the particles located at the same vertical level
are quite similar. Conversely, through time, the selected particles will cross several vertical
level and have very different speed. In the end, the time variance is logically higher than the
space variance.

Figure 1.8 – Particles at the same vertical at t and trajectory of one of them during the 50
next time steps.
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1.5 Conclusion

This chapter was intended as both an introduction to readers not familiar with turbulence and
the place to discuss some of the features specific to the reconstruction (Lagrangian modelling,
TKE estimations). The two first section sustained the first goal, while the two last sustained
the second.

Eulerian and Lagrangian descriptions are two referential (one is fixed, the other goes with
the flow). Eulerian is the most in use, but the particles in the reconstruction need a Lagrangian
model. Fluids movements are described by the Navier-Stokes equations. They are simplified
to be solvable for the target problem. Turbulence, our target problem, has the particularity to
be random. Reynolds average splits up the deterministic trend and the random fluctuations.
But this split induces a loss of information and the resulting system of equation (Reynolds
system) is unclosed. To close it, semi-empirical closure exist. They highlight the importance
of the turbulent kinetic energy (TKE) and the eddy dissipation rate (EDR) for the study of
turbulence. The consideration of structure functions (variance of speed increments) yields to
the Kolmogorov’ spectrum with a famous -5/3 slope in log-log scale. This continuous decrease
of the spectrum denotes the permanent transfer of energy from the large scales to the small
scales. All these features are combined in a Langevin equation (seen in chapter A) to build
the stochastic Lagrangian model used for the particles.

The reconstruction is based on the representation of the fluid with a set of particles. This
study is limited to 1-dimensional vertical movements. In the stochastic Lagrangian model,
some Eulerian terms are to estimate. There are approached thanks to a Gaussian regulariza-
tion kernel of parameter ` (homogeneous to an interaction length). This representation with
particles allows several way of estimation for the turbulent kinetic energy (TKE). The usual
way (with only one measurement point) is to compute the variance of the wind time series.
It works well as long as the turbulence is stationary, but there is no consensus on how long
the integration time, τ , should be. With the particles of the reconstruction, the TKE can
be estimated by a space variance, either on a whole vertical level, either using the Gaussian
regularization kernel. Four estimators of TKE are defined (TTKE, STKE, LSTKE, T’TKE)
and compared. Space variances (STKE and LSTKE) are no comparable to the time variances
(TTKE, T’TKE) because the Taylor’s hypothesis of frozen turbulence does not apply here:
eddies are advected horizontally while the lidar provides only vertical velocity measurements.
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Chapter 2

Bayesian filtering
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2.1 Introduction to non-linear filtering

2.1.1 The filtering problem

The general problem of filtering is to remove noise from a signal. In Bayesian filtering, a prior
information on how the signal should behave is given. Since, in practice, the signal we are
dealing with are discrete, we will focus only on discrete signals. The time step is denoted t.

We are interested in the knowledge of a quantity X evolving with time (it can be the
position of satellite, the price of a ton of wheat, the wind at a particular location...). We
make the assumption (slightly philosophical) that its evolution can be described by some
equation:

Xt+1 = Ft(Xt) (2.1)
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The function Ft is not perfectly known, and it is approached by another function ft: the
model. By doing this, we introduce an error (random by essence) εXt . Thus (Xt)t is modelled
by a stochastic process such as

Xt+1 = ft(Xt, ε
X
t ) (2.2)

with
ft : Rd × Rd −→ Rd

(X, ε) 7−→ ft(X, ε)

This process is only known through some observations of it, that we denote as (Yt)t.
Ideally, there is a direct link between the observation and the quantity observed :

Yt = Ht(Xt) (2.3)

But this link is not perfect, it usually relies on assumptions, or approximations made in the
measurement design. The theoretical function Ht is replaced by an existing function ht, and
it brings an error εYt (the measurement error).

Yt = ht(Xt, ε
Y
t ) (2.4)

with
ht : Rd × Rm −→ Rm

(X, ε) 7−→ ht(X, ε)

In the case where there are less observations than unknowns1, the problem can be seen
as in figure 2.1. The target state Xt lives in the state space E of dimension d. The model
describes the trajectory of the system into this space (the spiralish curve). The observations
belong in a space E′ of reducted dimension m < d. The aim of filtering is to retrieve the
volumic spiral from the flat spiral.

Hence, the knowledge ofX is tarnished by errors. Some errors come from the model, others
come from measurements. But both model and measurements bring valuable information
about X. The problem of Bayesian filtering is to get the best knowledge of X from imperfect
measurements and imperfect modelling. If we denote the so-called historical process of X
(resp. Y ) is denoted X0:t = (X0, ..., Xt) (resp. Y0:t = (Y0, ..., Yt)). The targets of the filtering
problem are the a priori and a posteriori probability laws (respectively equations (2.5) and
(2.6)).

ηt = P (Xt|Y0:t−1) (2.5)

η̂t = P (Xt|Y0:t) (2.6)

That is to say, the filtering problem is solved when, for any test function φ, we can estimate

1For example, it is the case for numerical weather prediction: there are about d = 107 unknowns and about
m = 106 observations.
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Figure 2.1 – Visually, Yt can be seen as the projection of Xt onto a plan accessible to measure.

the integrals 2.7 and 2.8 (distribution notation).

η(φ) := E [φ(Xt)|Y0:t−1] =
∫
φ(x)ηt(dx) (2.7)

η̂t(φ) := E [φ(Xt)|Y0:t] =
∫
φ(x)η̂t(dx) (2.8)

In particular, the cases φ(x) = x and φ(x) = x2 are interpreted easily. The mean state
Xe
t := E [Xt|Y0:t] gives the central trend of the stochastic process Xt. It is the average

trajectory of all realisations of Xt which fit with the observations Y0:t = y0:t. The variance
E
[
(Xt)2|Y0:t

]
is a score of the dispersion of such realisations. Both give valuable and easy to

interpret information. In the Gaussian case, they are the only information needed to describe
completely the probability laws ηt and η̂t.

The resolution of this problem requires some assumptions. Observations are assumed to
have the following properties:

• Conditionally on the hidden state, observations are independent.

P (Y0:t ∈ dy0:t|X0:t = x0:t) =
n∏
k=0

P (Yk ∈ dyk|Xk = xk)

• Yt depends only on the current (hidden) state.

P (Yt ∈ dyt|X0:t = x0:t) = P (Yt ∈ dyt|Xt = xt)
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• The law Yt given Xt has a density with respect to a measure Λ independent of the state
X.

P (Yt ∈ dyt|Xt = xt) = gt(xt, yt)Λ(dyt)

When the previous properties are satisfied, {Yk}k∈N is called amemoryless channel (Le Gland,
2009). The function gt(xt, yt) is the likelihood of the observations. Most of the time, the
observations are assumed to have Gaussian error, that is to say :

gt(xt, yt) = (2π)−1/2 exp
(
−1

2‖yt − ht(xt, 0)‖2Rt
)

Although the likelihood is the probability of the observations given the a priori state, it is
seen as a function of the a priori state. As a consequence, the notation Gt(x) := gt(x, yt) will
be adopted.

In summary, the filtering problem aims to find η(φ) and η̂t(φ) for any function φ, given
a model of evolution ft, the observation operator ht and a set of observations y0:t. Linear
filtering gather all the techniques where the model of evolution and the observation operator
are both linear functions. This case is of particular interest because very efficient solution
exists (the Kalman family) and the linear assumption suits to many simple systems and is
still a relevant first approach for non-linear systems. The solution given by the Kalman filters
will be briefly presented, with their strength and limitations. Then we focus on non-linear
filtering, and particles filters are presented.

2.1.2 Mutation and selection

The process (Xt)t solution of the system{
Xt+1 = ft(Xt, ε

X
t )

Yt = ht(Xt, ε
Y
t )

is a hidden Markov process: the random variable Xt depends only on its last state and the
value of X is not reachable directly. It is only known through observations Yt. The a priori
and a posteriori probability laws will be estimated recursively from an initial distribution.
The link between probability laws is made with stochastic kernels.
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Definition 2.1 (Stochastic kernel).

With words A stochastic kernel is a probability of transition from a space to another.
To each point of the departure space, it associates a probability measure on the arrival
space.

Formally K is a stochastic kernel between the measurable space (E, E) and (F,F) if

K : E ×F −→ [0, 1]
(x,A) 7−→ K(x,A)

such that

– ∀A ∈ F , K(·, A) : x 7→ K(x,A) is a measurable function.
– ∀x ∈ E, K(x, ·) : A 7→ K(x,A) is a probability measure.

This definition is illustrated by figure 2.2.

Figure 2.2 – The stochastic kernel K associates each point x in the departure space to a
probability in the arrival space.

In the filtering problem, two stochastic kernels are used: one to go from η̂t−1 to ηt, another
to go from ηt to η̂t. The stochastic kernel which transforms η̂t−1 into ηt is called the mutation
kernel Mt. Given a position x̂t−1 at t − 1, it tells the probability law of the system at the
next time step.

Mt(xt−1, dxt) = P (Xt ∈ dxt |Xt−1 = xt−1, Y0:t−1 = y0:t−1) (2.9)

The stochastic kernel which transforms ηt into η̂t is called the selection kernel St,ηt . Given a
position x̄ of the system before it is observed, it tells the probability law of the system after
a new observation is assimilated.

St,ηt(x̄, dx̂) = P
(
X̂t ∈ dx̂ |X̄t = x̄

)
(2.10)

η̂t−1
Mt−→ ηt

St,ηt−→ η̂t
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In both transforms, the departure space and the arrival space are equal. For example,
it the target process is a particle evolving in 2D space the illustration 2.2 can be changed
in figure 2.3. The kernel associates to every point x ∈ R2 a probability to arrive close to
y ∈ R2, in the area dy ∈ B(R2). The move from x to y is either due to the time evolution (the
mutation kernel does this transform) or to the correction after a new observation arrived (the
selection kernel does this transform). The subscript ηt on the selection kernel highlights that
the selection kernel depends on the full probability law ηt, not only on the current state x̄.
The mutation or the selection associate to any point a probability law: that is why, without
further simplification, they can only be described by stochastic kernels.

Figure 2.3 – Illustration of stochastic kernel to describe the movement of a particle in a 2D
space.

The action of stochastic kernel is to integrate the conditional probabilities (2.9) and (2.10)
over the departure point.

ηt(dxt) =
∫
η̂t−1(dxt−1)Mt(xt−1, dxt) (2.11)

η̂t(dx̂) =
∫
ηt(dx̄)St,ηt(x̄, dx̂) (2.12)

The expression of the mutation kernel 2.9 and the relation 2.11 directly come from the
formula of total probability. For the selection kernel, the link between the expression 2.10
and the relation 2.12 will be discussed in the section dedicated to the particles filters.

The filtering algorithm will be thus be split in two steps: a first step of mutation, a second
step of selection (illustrated in figure 2.4. The mutation step is a modelling part: only a better
knowledge about the studied phenomenon can improve the mutation kernel. It is specific to
a single phenomenon. The selection step, conversely, is more generic. Since the modelling
of turbulence is discussed elsewhere, this section focuses on the selection kernel. On top the
memoryless channel assumption, the selection step takes profit of additional assumption on
ft and ht.
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Figure 2.4 – Bayesian filtering has two steps for each time step. The first step propagate the a
posteriori state of previous time X̂t−1 to the current time (mutation step). The second time
step correct the a priori state X̄t with the observation available at this time Yt (selection
step). And so on...

2.2 The Kalman family

Rudolf Kalman in 1960 found an exact solution to the filtering problem when the functions ft
and ht are linear and on the errors εXt and εYt are Gaussian and independent (Kalman et al.,
1960). Under such assumptions, the probability law of the target is defined entirely by its
mean and variance. We distinguish the mean and variance before the assimilation of the last
observation (X̄t, P̄t: a priori) and after (X̂t, P̂t: a posteriori). The error covariance of εXt is
denoted Bt ∈ Rd×d and the error covariance of εYt is denoted Rt ∈ Rm×m. It is assumed both
Bt and Rt are known for any t. It yields to the following four unknowns.

X̄t = E [Xt|Y0, . . . , Yt−1] (2.13)

X̂t = E [Xt|Y0, . . . , Yt] (2.14)

P̄t = E
[(
Xt − X̄t

) (
Xt − X̄t

)T ]
(2.15)

P̂t = E
[(
Xt − X̂t

) (
Xt − X̂t

)T ]
(2.16)

The original Kalman gives the four unknown analytically. The given estimator is unbiased
and of minimum variance. With the success of the original Kalman filter, the temptation was
strong to extend it to non-linear cases. Extended Kalman filter, unscented Kalman filter
and ensemble Kalman filter export the orginal technique to the non-linear cases with gradual
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complexity.

2.2.1 Original Kalman filter

The equations (??) and (??) are written in the following form when the functions ft and ht
are linear and on the errors εXt and εYt are Gaussian and independent:{

Xt = FtXt−1 + εXt
Yt = HtXt + εYt

(2.17)

with Ft ∈ Rd×d, Ht ∈ Rm×d, εXt and εYt respectively d and m-dimensional centred Gaussian
vectors.

The solution is given by the system (2.18). The estimator X̂t is optimal: it is unbiased and
has a variance equal to the Cramer-Rao bound (Arulampalam et al., 2002; Le Gland, 2009;
Welch and Bishop, 1995). It is a compromise of the information brought by the model (X̄t)
and the information brought by the observation (Yt −HtX̄t) pondered by their uncertainty
(repectively Bt and Rt). If the observation is perfect (Rt = 0), then X̂t = HT

t Yt. The model
is dismissed, only the observation is kept. If the model is perfect (Bt = 0), then X̂t = X̄t.
The observation is not used, only the model is trusted.



Prediction :
X̄t = FtX̂t−1
P̄t = FtP̂t−1F

T
t +Bt

Correction :
Kt = P̄tH

T
t

(
HtP̄tH

T
t +Rt

)−1

X̂t = X̄t +Kt

(
Yt −HtX̄t

)
P̂t = P̄t −KtHtP̄t

(2.18)

The expression of (2.18) can be found by maximizing the likelihood by a variational
approach. Both solution are equivalent. They can be found in Le Gland (2009); Welch
and Bishop (1995). The variational approach clearly sustains the interpretation of X̂t as a
compromise between observation and model.

X̄t = argmin
X

{1
2‖X − FtX̂t−1‖2Bt

}
(2.19)

X̂t = argmin
X

{1
2‖X − FtX̂t−1‖2Bt + 1

2‖Yt −HtX‖2Rt
}

(2.20)
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2.2.2 Extended Kalman filter

The extended Kalman filter (EKF) exports the original Kalman filter to the non-linear case
almost directly. The system (2.17) is complexioned into the sytem (2.21):{

Xt = ft(Xt−1, ε
X
t )

Yt = ht(Xt, ε
Y
t ) (2.21)

with the non-linear functions ft and ht:

ft : Rd × Rd −→ Rd
(X, ε) 7−→ ft(X, ε)

and ht : Rd × Rm −→ Rm
(X, ε) 7−→ ht(X, ε)

The functions ft and ht are assumed differentiable, are their Taylor expansion at order 1
is used as a linear approximation of them.

ft(Xt, ε
X
t ) = ft(X̂t, 0) + Ft

(
Xt − X̂t

)
+ Ctε

X
t +O

(
‖
(
Xt − X̂t, ε

X
t

)
‖2Rd×Rd

)
ht(Xt, ε

Y
t ) = ht(X̄t, 0) +Ht

(
Xt − X̄t

)
+Dtε

Y
t +O

(
‖
(
Xt − X̄t, ε

Y
t

)
‖2Rd×Rm

)
with the matrices

Ft =
(
∂f

(i)
t

∂X(j) (X̂t, 0)
)

16i,j6d
Ct =

(
∂f

(i)
t

∂ε(j)
(X̂t−1, 0)

)
16i,j6d

Ht =
(
∂h

(i)
t

∂X(j) (X̄t, 0)
)

16j6d
16i6m

Dt =
(
∂h

(i)
t

∂ε(j)
(X̄t, 0)

)
16i,j6m

With this linearisation, the same computation can be done. The ensuing estimator is the
EKF, given by equations (2.22). One can see that it is not very different from the original
Kalman filter. The only difference is the direct propagation from X̂t−1 with no noise to get
X̂t and the use of Jacobian matrices instead of given Ft and Ht. The apparition of Jacobian
dreadfully increases the computational cost because they must be calculated and inverted
at each time step. The proposed estimator X̂t is no longer optimal. Moreover, the filter
is proven to be unstable when the noise is high or when it is badly initialized (Reif et al.,
1999). Conditions to have a bounded error include small noise, good starting point, and
non-linearities not continuous.
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

Prévision :
X̄t = ft(X̂t−1, 0)
P̄t = FtP̂t−1F

T
t + CtBtC

T
t

Correction :
Kt = P̄tH

T
t

(
HtP̄tH

T
t +DtRtD

T
t

)−1

X̂t = X̄t +Kt

(
Yt − ht(X̄t, 0)

)
P̂t = P̄t −KtHtP̄t

(2.22)

2.2.3 Unscented Kalman filter

So-called unscented Kalman filter has been invented by Julier and Uhlmann (1997, 2004). Its
idea is to approximate the distribution of Xt rather than the non-linear functions ft and ht.
The distribution of Xt is approximated using a sample of 2d+ 1 points. The sampling point
(so-called sigma-points) are deterministically chosen according to the method described by
Julier and Uhlmann (1997): the unscented transform.

The principle of the unscented transform is to approximate the two first moments with
two points per dimension plus the average (for a real-valued random variable X, such points
would be E [X], E [X] + σX and E [X]− σX). Since the average is common for all dimension,
the unscented transform ends up with 2d + 1 points {X0, ...,X2d+1} gathered into a matrix
X ∈ R2d+1×d (each line of X is a state vector). For a d-dimensional random variable X,
its covariance matrix P̂ = cov(X,X) is positive-define and symmetric. Thus there exists
Q ∈ Rd×d such that P̂ = QTQ (Q is the "square-root" of P̂ ). For any κ ∈ R, the sigma-points
are given by:

X0 = X̂

Xi = X̂ +
√
d+ κQ�,i , ∀i ∈ {1, ..., d}

Xi+d = X̂ −
√
d+ κQ�,i

with each a weight w ∈ R2d+1 such that w = ( κ
d+κ ,

1
2(d+κ) , ...,

1
2(d+κ))T

After the unscented transform, the prediction step is done by apply the non-linear trans-
form to the sigma points. The mean and covariance are computed directly from the predicted
sigma points, according to their weight.

X̄t =
2d∑
i=0

wiXi = XTw

P̄t =
2d∑
i=0

wi
(
Xi − X̄t

) (
Xi − X̄t

)T

The correction step assimilates the observation in the observation space. The observation
operator is applied to the sigma points, without noise: Y = ht(X, 0). The given observation
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Yt is compared to the average of such ensemble.

X̂t = X̄t +Kt(Yt −YTw)

P̂t = P̄t −KtP
yyKT

t

with the covariance matrix of the ensemble in the observation space P yy =
∑2d
i=0 wi(Yi −

YTw)(Y − YTw)T and the gain matrix Kt = P xy(P yy)−1, where P yy =
∑2d
i=0 wi(Xi −

X̄t)(Yi −YTw)T is the likelihood.

After the correction, the unscented transform create a new sample with the corrected
mean and covariance. This new sample replace the previous, and the cycle starts again. In
summary, the algorithm of the UKF consists in the following steps:

1. At t = 0, do the unscented transform with the initial mean and covariance: X =
UT (x0, P0)

2. Propagate the sigma points to the next time step with the non-linear dynamic: Xt =
ft(Xt−1, 0).

3. Compute the prediction statistics: X̄t = XTw, P̄t =
∑2d
i=0w

i
(
Xi − X̄t

) (
Xi − X̄t

)T
4. Apply the observation operator to the sigma points: Y = ht(X, 0)

5. Compute the corrected statistics: X̂t = X̄t +Kt(Yt −YTw), P̂t = P̄t −KtP
yyKT

t

6. Do the unscented transform with the corrected statistics: X = UT (X̂t, P̂t)

7. Repeat from step 2 until the end of the time series.

The main advantage of the UKF over the EKF is to avoid degeneration. The estimation
are stable, and the estimation of covariances matrices are widely improved, as shown in
(Julier and Uhlmann, 2004). In high dimension, the unscented transform suffers from non-
local sampling. The UKF is limited to the two first momenta. It is a barrier for strongly
non-Gaussian distributions. Still, the UKF is very popular filter, because it avoids costly
Monte Carlo method and provides good results. Many application can be found, as well as
improvement to shrink its drawbacks (Julier, 2002; Gustafsson and Hendeby, 2012).

2.2.4 Ensemble Kalman filter

The ensemble Kalman filter (EnKF) is based on the same idea as the UKF: it is better to
approximate the probability law than the non-linear dynamic. Instead of using the unscented
transform to approximate the law, the EnKF uses a Monte Carlo method. Since its creation
by Evensen (1994), the EnKF encountered a large success in the Earth science community.
Evensen (2003) relates the many works on the ensemble Kalman filter that have been carried
out before 2003. There is no mention to the unscented Kalman filter because it can only be
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used on small problems. As Evensen is focused in geosciences, the unscented transform has a
prohibitive cost and thus not considered in the paper.

The ensemble Kalman filter presented here comes from Burgers et al. (1998). It assumes
the observation operator is linear: Yt = ht(Xt, ε

Y
t ) = HtXt + εYt with Ht ∈ Rm×d and

εYt  N (0, Rt). As for UKF, the distribution of Xt is approximated using a sample, but a
random sample of N points. This sample Xt ∈ RN×d is called an ensemble. A single state
Xi ∈ Rd of the ensemble is called a member. Every member has the same weight in the
computation of the system’s statistics. Each member is propagated independently from the
time t to t+1 with the non-linear dynamic ft. The a priori statistics are computed as follows:

X̄t = 1
N

N∑
i=0

Xi
t

P̄t = 1
N

N∑
i=0

(
Xi
t − X̄t

) (
Xi
t − X̄t

)T

For the correction step, an ensemble of observations is created. That is to say a centred
Gaussian noise with variance Rt is added to the provided observation Yt: Yi = Yt + εi. The
corrected ensemble (also called analysis) is the one obtained from the assimilation of one
member in one member of prediction: X̂i

t = Xi + Kt(Yi − HtXi). The gain matrix is the
same as for the original Kalman filter: Kt = P̄tH

T
t

(
HtP̄tH

T
t +Rt

)−1
. From that a posteriori

ensemble, the corrected statistics are computed:

X̂t = 1
N

N∑
i=0

X̂i
t

P̂t = 1
N

N∑
i=0

(
X̂i
t − X̂t

) (
X̂i
t − X̂t

)T

After the correction step, the a posteriori ensemble is used to build the next a priori
ensemble (by moving each member according to the non-linear dynamic). The ensemble is
not reset and thus some features due to dynamics can appear. It makes the sample more
representative of the system. In summary, the ensemble Kalman filter is defined by the
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following system: 

Prediction :
Xi
t = ft(X̂i

t−1, 0)
X̄t = 1

N

∑N
i=0 Xi

t

P̄t = 1
N

∑N
i=0

(
Xi
t − X̄t

) (
Xi
t − X̄t

)T
Correction :

Kt = P̄tH
T
t

(
HtP̄tH

T
t +Rt

)−1

X̂i
t = Xi +Kt(Yt + εiY −HtXi)

X̂t = 1
N

∑N
i=0 X̂i

t

P̂t = 1
N

∑N
i=0

(
X̂i
t − X̂t

) (
X̂i
t − X̂t

)T

The target distribution η̂t = P (Xt|Y0:t) is approached by the corrected ensemble X̂. When
the size of the ensemble N goes to infinity, it is expected that the approximation converges
toward the target. Le Gland et al. (2009) studied the asymptotic probability law of the EnKF.
They show the ensemble Kalman filter converges. The asymptotic law is the Bayesian filter
η̂t when the dynamic is linear and the noise are Gaussian (EnKF converges toward KF). But
when the dynamic is non-linear, it is shown that EnKF converges toward the wrong limit.
Nevertheless, Mandel et al. (2011) shows the Lp convergence of the 2 first moments toward
the good limit, which is sufficient for most of application. Baehr et al. (2010) recommends
to couple a large scale EnKF with a local particle filter for numerical weather prediction
applications.

To conclude this introduction to linear and non-linear filtering with the Kalman family of
filters, the table 2.1 recaps the main idea for each Kalman filter. This introduction did not
meant to be exhaustive. Even restricted to one area of application, the popularity of Kalman
filter is such that it become hard to be exhaustive. The 328 references given by Mahmoud
and Khalid (2013) for distributed systems give a taste of it. Original Kalman filter is optimal
for linear and Gaussian filtering. Extended Kalman filter can be useful for poorly non-linear
dynamics, but suffers from instability and high computational cost. Unscented Kalman filter
uses 2d+1 points to estimate mean and covariance (unscented transform) with less instability
and not higher computational cost. Ensemble Kalman filter uses N points to estimate mean
and covariance (Monte Carlo) and adds noise to the observations. Although EnKF is the
most adapted to non-linear dynamics, it does not fit for strongly non-Gaussian posterior.
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Name of
the filter

Short
name Description Avantages Shortcomings

Classical
Kalman KF

Solution of the
filtering problem
in the linear and
Gaussian case

Optimal
Needs linearity and

Gaussian independent
noise

Extended
Kalman EKF KF on the

increments

Simple extension of
KF to the non-linear

cases

Unstable when high
noise or discontinuous
non-linearity, high
computational cost

Kalman
"un-

scented"
UKF

Approximation of
the law with
unscented
transform

Better representation
of variances, suffer

less from non-linearity

Only 2 first momenta
are known.

Kalman
d’ensemble EnKF

Approximation of
the law with
Monte Carlo

Suitable to very high
dimensional problems

Does not converge
toward the optimal

estimator

Table 2.1 – Short list of Kalman filters with pros and cons

2.3 Particles filters

2.3.1 The Bayesian filter and some admissible selection kernels

At the begin of the chapter, the filtering problem has been introduced and the two major
steps (mutation and selection) have been presented. It has been said that the mutation step
is more the concern of modelling than of filtering. The concern of filtering is the selection
step. We recall here the equation (2.12) which define a selection kernel.

Definition 2.2 (Selection kernel).

With words A selection kernel is a stochastic kernel which gives, for any a priori state,
the a posteriori probability law.

Formally St is a selection kernel if it verifies

η̂t(dx̂) =
∫
ηt(dx̄)St(x̄, dx̂)

it depends on x̄ and x̂, but also on the whole a priori probability law, in which case it is
denoted St,ηt.

The Bayesian filter is the filter which can access for any function φ the distribution ηt and
η̂t. Although they have been presented at the beginning of the chapter, we did not express
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what Bayes’ theorem says from them because it was not necessary to introduce Kalman filters.
Bayes’ theorem for the event A = {Xt ∈ dx|Y0:t−1 = y0:t−1} and B = {Yt ∈ dyt} gives

P (Xt ∈ dx|Y0:t = y0:t) = P (Yt ∈ dyt|Xt = x, Y0:t−1 = y0:t−1)P (Xt ∈ dx|Y0:t−1 = y0:t−1)
P (Yt ∈ dyt)

(2.23)

On the left hand side, one can recognize the a posteriori distribution η̂t(dx̂). On the right
hand side, one of the term at the numerator is the a priori distribution ηt(dx̄). The remaining
terms can be expressed thanks to the assumption that (Yt)t is a memoryless channel. In
particular, P (Yt ∈ dyt|Xt = x) = gt(x, yt)Λ(dyt) with the measure Λ which does not depend
on Xt. At the denominator, the formula of total probability is used once more and the term
qt(dyt) disappears:

P (Yt ∈ dyt|Xt = x, Y0:t−1 = y0:t−1)
P (Yt ∈ dyt)

= gt(x, yt)����Λ(dyt)∫
gt(x, yt)����Λ(dyt)P (Xt ∈ dx) = gt(x, yt)∫

gt(x, yt)ηt(dx)

Finally, Bayes’ theorem expresses the a posteriori distribution in function of the a priori
distribution and the likelihood. For now, the notation of the likelihood as a function of the a
priori state is in use Gt(x) := gt(x, yt) (the observation yt is implied) as well as the distribution
notation ηt(φ) =

∫
φ(x)ηt(dx) for any function φ. The equation 2.23 can be rewritten

η̂t(dx) = Gt(x)
ηt(Gt)

ηt(dx) (2.24)

The equation 2.24 is the starting point to define several selection kernels. Indeed, any
kernel satisfying the relation (2.12) can be used as selection kernel. Two candidates are
shown to match the definition 2.2, but many others exists (Del Moral, 2004; Baehr, 2008).

Proposition 2.1. The following kernels are selections kernels.

S1
t,ηt(x̄, dx̂) = Gt(x̂)

ηt(Gt)
ηt(dx̂)

S2
t,ηt(x̄, dx̂) = Gt(x̄)δx̄(dx̂) + [1−Gt(x̄)] Gt(x̂)

ηt(Gt)
ηt(dx̂)

Proof. Both match the definition 2.1 of a stochastic kernel. The kernel S1
t,ηt is a selection

kernel: ∫
x̄

ηt(dx̄)S1
t,ηt(x̄, dx̂) =

∫
x̄

ηt(dx̄) Gt(x̂)
ηt(Gt)

ηt(dx̂)

= Gt(x̂)
ηt(Gt)

ηt(dx̂)︸ ︷︷ ︸
η̂t

∫
x̄

ηt(dx̄)︸ ︷︷ ︸
=1

= η̂t(dx̂)
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Idem for the kernel S2
t,ηt :∫

x̄

ηt(dx̄)S2
t,ηt(x̄, dx̂) =

∫
x̄

ηt(dx̄)
(
Gt(x̄)δx̄(dx̂) + [1−Gt(x̄)] Gt(x̂)

ηt(Gt)
ηt(dx̂)

)
=

∫
x̄

ηt(dx̄)Gt(x̄)δx̄(dx̂) + Gt(x̂)
ηt(Gt)

ηt(dx̂)
∫
x̄

ηt(dx̄) [1−Gt(x̄)]

= η̂t(dx̂)ηt(Gt) + η̂t(dx̂) [1− ηt(Gt)]
= η̂t(dx̂)

To interpret the differences between these kernels, we recall the expression (2.10) which
holds for any of them:

St,ηt(x̄, dx̂) = P
(
X̂t ∈ dx̂ |X̄t = x̄

)
with X̂t

L= Xt|Y0:t and X̄t
L= Xt|Y0:t−1 and L= standing for the equality in law.

This relation tells the general interpretation of selection kernels: given a position x̄ of the
system before it is observed, St,ηt(x̄, dx̂) is the probability that the system after is around x̂
after a new observation is assimilated.

For the first kernel S1
t,ηt , this probability does not depend on x̄, but it does depend on

the whole a priori distribution ηt. It means that all a priori state x̄ will give the same a
posteriori probability law. Nevertheless, the gathering of all a priori states has an influence
on the a posteriori probability law. That is to say, the a priori state x̄ has an impact on the a
posteriori probability law as a part of the a priori distribution. This is a so-called mean-field
process. For a posterior state x̂, the higher the a priori probability ηt(dx̂), the higher the
a posteriori probability η̂t(dx̂). Moreover, the transition probability depends on the arrival
state through the term Gt(x̂). It tells the higher is the likelihood of a posterior, the higher
is its probability. Overall, the selection kernel S1

t,ηt selects the posterior states both close the
observation and with good a priori probability.

For the second kernel S2
t,ηt , the transition probability does depend on the a priori state

x̄. The term Gt(x̄)δx̄(dx̂) indicates that prior states with a high likelihood will have a larger
chance to stay at the point x̄. Conversely, the prior states with a small likelihood will have
different posterior states, given according to the same rule as the kernel S1

t,ηt . That is to say,
with kernel 2, the prior the closest the observation are kept where they are and the others
have a posterior given by the comprise between likelihood and the a priori probability, like
with kernel 1.

These two kernels lead to different algorithm, as we will see at the end of this chapter: the
kernel 1 is used in the SIS and SIR algorithms, the kernel 2 is used in the genetic selection
algorithm. By default, what the expression "particle filter" stands for is the filter with the
selection kernel S1

t,ηt . But any other kernel can usually be used instead and lead to the same
comments.
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2.3.2 The particle approximation

At chapter A, we have seen that random variables and stochastic processes are manipulated
in practice with samples. Unless the theory gives directly the quantities of interest2, the
estimation are made on a sample. The target distributions are approached with a Monte
Carlo method. Each element of a sample is called a particle.

ηNt = 1
N

N∑
i=1

δXi
t

(2.25)

η̂Nt = 1
N

N∑
i=1

δX̂i
t

(2.26)

The particle approximation have already been made for the ensemble Kalman filter and,
in a certain extend3, for the unscented Kalman filter. It is unavoidable for particle filters.
The mutation and selection kernel should be rewritten in the particle approximation. But
all the interpretation can be done equally out of the particle approximation. The particle
approximation is thus only presented to better describe the algorithms.

The a posteriori distribution η̂t(φ) =
∫
φ(x)η̂t(dx) is approached by

η̂Nt (φ) =
N∑
i=1

wiφ(xi) (2.27)

with the weight associated to each particle:

wi = P
(
Xi
t ∈ dxi|Y0:t

)
= Gt(xi)ηt(dxi)∑N

i=1Gt(xi)ηt(dxi)
(2.28)

The weight samples the importance distribution. It is given by Bayes’ theorem. Using these
weight, the selection kernel S1

t,ηt is written

S1,N
t,ηt (x̄i, dx̂i) = P

(
X̂i
t ∈ dx̂i|X̄i

t = x̄i
)

= wi

A particle at the point x̄i will be at x̂i after the correction with a probability wi. The
second selection kernel is written as such

S2,N
t,ηt (x̄i, dx̂i) = P

(
X̂i
t ∈ dx̂i|X̄i

t = x̄i
)

= Gt(x̄i)δx̄i + (1−Gt(x̄i))wi

2It is the case for the linear and Gaussian case: the theory tells us the target laws are Gaussian and gives a
way to estimate recursively mean and covariance with the original Kalman filter. There is no need of a sample
to solve the filtering problem.

3The unscented transform gives a deterministic choice of 2d+1 points which are used to compute mean and
covariance. This approach is different than a full Monte Carlo sample with statistically-based manipulations.
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A particle at the point x̄i has a probability Gt(x̄i) to stay at x̄i and a probability (1 −
Gt(x̄i)) to move to a new point x̂i which has a large weight wi.

2.3.3 Three particles filter algorithms

These three algorithms are described in (Arulampalam et al., 2002; Maskell and Gordon,
2001; Doucet et al., 2000; van Leeuwen, 2009).

2.3.3.1 Sequential importance sampling (SIS)

In sequential importance sampling, particles are not modified by the selection kernel. Only
their weight for the estimation is changed. The weight is given according to the likelihood
Hence the posterior take the prior information from the position of particles and the likelihood
information from their weight. The algorithm is illustred by figure 2.6. The corresponding
kernel for this algorithm is

S1
t,ηt(x̄, dx̂) = Gt(x̂)

ηt(Gt)
ηt(dx̂)

This algorithm is known to degenerate (Snyder et al., 2008; Bengtsson et al., 2008;
Del Moral, 2004). The particles spread away with time because of model error while the
observation stays close to the real signal. It results smaller and smaller weights, which de-
grades the posterior estimation because only few particles remain relevant.
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Figure 2.5 – SIS algorithm illustration. The particles a priori are represented by their his-
togram (in green). Their weight, given by the likelihood, is the blue dashed curve. The
resulting posterior is drawn in red.

2.3.3.2 Sampling with importance resampling (SIR)

Particles are modified by the selection kernel: they are all resampled according to their
likelihood. After the resampling, all particle have the same weight. Hence the distribution of
particles is truly the posterior distribution. The algorithm is illustrated by figure 2.6. The
corresponding kernel for this algorithm is also

S1
t,ηt(x̄, dx̂) = Gt(x̂)

ηt(Gt)
ηt(dx̂)

The resampling avoid degeneracy which can occur with the SIS algorithm (Doucet et al.,
2000; van Leeuwen, 2009). However, with SIR, particles have a trend to gather on few values.
Even with a good discrepancy of the initial population of particles, the discrepancy collapses.
Various tricks algorithms exist to sustain variability among particles but avoid degeneracy
(Del Moral, 2004; Doucet et al., 2000; van Leeuwen, 2009). We will only focus on one them:
the genetic selection, which is in use for the non-linear filtering of Doppler lidar we present.
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Figure 2.6 – SIR algorithm illustration. The particles a priori are represented by their his-
togram (in green). Their weight, given by the likelihood, is the blue dashed curve. The
resulting posterior is drawn in red.

2.3.3.3 Genetic selection

The genetic algorithm include an acceptance/rejection step: particles selected are not modi-
fied, particles rejected are resampled in the same way as in SIR. The selection kernel associated
to this algorithm is

S2
t,ηt(x̄, dx̂) = Gt(x̄)δx̄(dx̂) + [1−Gt(x̄)] Gt(x̂)

ηt(Gt)
ηt(dx̂)

The selection kernel must be read as follows. The first term has for factor δx̄(dx̂): the ar-

riving probability is non-zero only in x̄. The second term has for factor Gt(x̂)
ηt(Gt)

ηt(dx̂): exactly

the kernel S1
t,ηt(x̄, dx̂), which resamples particles independently from where they come from.

The coefficient of these factors are respectively Gt(x̄) and 1−Gt(x̄), which are likelihood and
anti-likelihood of the particle at the departure point. Hence, this selection kernel denotes the
following operations: first, the particles are selected randomly with a probability proportional
to their likelihood at the departure point. The selected particles stay where they are. The
rejected particles are resampled like with SIR.
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The advantage of this method is to keep the benefit of a good prediction. It also reduces
the computing cost due to resampling. The number of rejected particles is also a simple tracer
of degeneracy: if particles are taking unrealistic values, they will be rejected. To give an order
of magnitude, when the reconstruction method is performing well, the proportion of rejection
lies between 15% and 55%, with an average value around 30%

Figure 2.7 – Illustration of the genetic selection algorithm. The process is the same as SIR,
but it is preceded by an acceptance/rejection step. The accepted particles are represented in
grey. They are selected according to their likelihood (grey bell curve).

2.3.4 Particles filter and ensemble Kalman filter

At the first sight, particle filters and ensemble Kalman filter look similar. Indeed, they both
aim to perform non-linear filtering and the Monte Carlo approximation of the distribution is
a common feature. Although, they differ on two points:

• In EnKF, noise is added to observations, not in particle filters.

• In particle filters, members have different weights (or are resampled), not in EnKF.

These two main differences come from two independent approaches: EnKF coming from the
original KF and keeping its "linear aspect" and particle filter coming from the direct use
of Bayes’ formula (Pham, 2001). Le Gland et al. (2009) show there is no difference in the
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mutation step, but only in the selection step. They highlight the difference as such: the a
posteriori distributions obtained with the ensemble Kalman filter is denoted η̂KF (φ) and the
one obtained with the Bayes’ formula is denoted η̂BF (φ). They are based on a common a
priori distribution ηt. The Kalman filtered distribution is given by (2.29) for any function φ.

η̂KFt (φ) =
∫ ∫

φ(x+Kt(yt −Htx− v))qt(v)dvηt(dx) (2.29)

with Kt = P̄tH
T
t

(
HtP̄tH

T
t +Rt

)−1
the gain matrix and qt the PDF of the added error. Most

of the time, the error are assumed to be Gaussian: qt(v) = (2π)−1/2e−v
2/2.

The Bayesian filtered distribution is given by (2.30).

η̂BFt (φ) =
∫
φ(x)qt(yt −Htx)ηt(dx)∫
qt(yt −Htx)ηt(dx) (2.30)

with the likelihood Gt(x) = qt(yt −Htx) in equation (2.24).

When restricted to the 1-dimensional case, the definition of a the selection kernel and the
change of variables (x̄, x̂)→ (x, v), it yields to the following kernels:

SBFt,ηt (x̄, x̂) = qt(yt −Htx̂)∫
qt(yt −Htx)ηt(dx)ηt(dx̂) (2.31)

SKFt (x̄, x̂) = qt
(
yt −K−1

t (x̂− (1−KtHt)x̄)
)
dx̂ (2.32)

Le Gland et al. (2009) argue that the two distributions η̂BFt and η̂KFt are equal only when
the dynamic is linear. Out of this case, the EnKF does not converge to the Bayesian filter.
And indeed, the interpretation of stochastic kernels points out several differences.

The kernel SKFt does not depend on the full probability law ηt (which is no longer in
subscript) and depends on the a priori state x̄. It tells that the selection step is done
independently among particles. As one can see in the equations of EnKF, the corrected
value for a member depends only the current state of this member. The other members
does not influence the correction. Conversely, in the kernel SBFt,ηt , one can see that the full
probability law ηt appears and the a priori state x̄ does not.

2.4 Conclusion

The filtering problem is to find a priori and a posteriori estimates of the system, given a
model and set of observations with known variances. Bayesian filters have two steps: the
mutation and the selection. They are described by stochastic kernels (Le Gland, 2009).

Kalman filter gives a solution of the filtering problem when the dynamic is linear and
the noises are Gaussian. The estimator provided by the original Kalman filter is unbiased
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and with a minimum variance (Welch and Bishop, 1995). However, the linear dynamic is
limiting and various extensions have been invented to extend the Kalman filter to non-linear
cases. Extended Kalman filter is based on a linearisation of the dynamics with Taylor’s
formula. It can be useful for poorly non-linear dynamics, but suffers from instability and high
computational cost (Reif et al., 1999). Unscented Kalman filter uses 2d+1 points to estimate
mean and covariance (unscented transform) with less instability and not higher computational
cost (Julier and Uhlmann, 1997, 2004). Ensemble Kalman filter uses N points to estimate
mean and covariance (Monte Carlo) and adds noise to the observations ?Burgers et al. (1998);
Evensen (2003). Despite estimation of mean and covariance are reliable (Mandel et al., 2011),
the asymptotic filter is not the Bayesian filter when dynamics are non-linear (Le Gland et al.,
2009). Kalman filters are very famous and give good results when the stochastic process to
estimate has a nearly Gaussian distribution. But when the dynamic is strongly non-linear,
the Gaussian assumption is strong and particle filters should be be preferred. Thus, to filter
the wind measurements at turbulence scale, one needs particles filters.

Particles filters overcome some limitations of the Kalman family for strongly non-linear
and/or non-Gaussian problems. But they are limited by degeneracy when applied to high
dimensional systems (Snyder et al., 2008; Bengtsson et al., 2008), especially in geosciences
(van Leeuwen, 2009). Three algorithms have been commented: sequential importance sam-
pling (SIS), sampling with importance resampling (SIR) and genetic selection (Arulampalam
et al., 2002; Doucet et al., 2000). Particles filters are widely used in other domains with non-
linear/non-Gaussian filtering problem such as target positioning and tracking (Gustafsson
et al., 2002), finance (Javaheri et al., 2003; Lopes and Tsay, 2011), audio signal processing
(Fong et al., 2002) and more (Smith et al., 2013). Attempts to export it in meteorology for
data assimilation has not been successful yet due to the limitations of particles filters for
high-dimensional systems (van Leeuwen, 2009; Snyder et al., 2008). But other experiments
where promising in oceanography (van Leeuwen, 2003) or with auxiliary particle filters (Baehr
et al., 2010). At smaller scale than numerical weather prediction, Bernardin et al. (2009) used
particle filters to refine the wind on a larger scale. At even smaller scale, Baehr (2008) ap-
plied particle filters on fast punctual wind measurements: this is the so-called turbulence
reconstruction method. He also gave a theoretical description of the reconstruction in (Baehr,
2010). The first application to a Doppler lidar was done by Suzat et al. (2011) and Baehr
et al. (2011). Recently, Rottner (2015) extended it to real 3D Doppler lidar measurements.
The current work explores the 1D vertical staring Doppler lidar.
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Chapter 3

Instrument and material
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Lidars for wind measurements have become popular instruments over the last decades
(Köpp et al., 1983; Hall et al., 1984; Menzies and Hardesty, 1989; Frehlich and Yadlowsky,
1994; Dabas et al., 2000; Grund et al., 2001; Cariou et al., 2011; Sathe and Mann, 2013). Ap-
plications of atmospheric Doppler lidars are numerous: boundary layer meteorology (Tucker
et al., 2009; Neiman et al., 1988; Smalikho et al., 2005), wind energy (Kusiak and Song, 2010;
Pichugina et al., 2011; Schlipf, 2014) and airport management (Chan and Shao, 2007; Hinton
et al., 2000) for the most popular. In wind energy, lidars are used to measure the wind ahead
of wind turbine and thus optimise (in both intensity and regularity) the electricity production
or prevent from damages due to turbulence (Wharton and Lundquist, 2012; Schlipf, 2014).
They can also assess the potential of a tentative of wind farm site (Kusiak and Song, 2010;
Pichugina et al., 2011; Sun et al., 2012; Banta et al., 2013). In airport management, lidars
measure the wake of aircrafts to optimise the use of runways (Hinton et al., 2000), to warn
about wind shear (Chan and Shao, 2007; Chan et al., 2006) or pollution (Bennett et al.,
2010). According to the last ASIAS Weather-related Aviation Accident Study1, weather was
a cause or a contributing factor in 20.1% of incidents reported between 2003 and 2007. Inside
these 20.1%, wind, turbulence, up/down drafts and wind shear are responsible for respectively

1Hyperlink to the report on ASIAS website : http://www.asias.faa.gov/ (in 2017)
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51.7%, 5.1%, 3.8% and 1.7% of incidents (ASI, 2010). Doppler lidars can help to reduce the
risk around these phenomena if they are able to measure both wind and turbulence.

The turbulence reconstruction method has been invented for that purpose. As it is based
on the lidar, this chapter tells more about this instrument. First, it is explained how a wind
lidar works. Then, it is followed by a short focus on turbulence estimation with lidar. Next,
the real data on which are based this study are presented, with a particular focus on missing
data issues.

3.1 Instrument

3.1.1 The principle of measurement

Radars send radio waves in the atmosphere, lidars send light. The principle of the measure-
ment is otherwise the same, only the wavelength λ of the electromagnetic wave sent changes.
But a different λ makes radars and lidars sensitive to very different things. For the lidar used
in the filtering, λ = 1.5µm.

The air is constituted of molecules with two or three atoms. Their size is about few
nanometers. It also contains aerosols (fine particles like dust, smoke, sea spray...), about a
micrometer large2. When light goes through atmosphere, it interacts with both molecules
and particles. The scattering is different for molecules and particles because of their large
difference of size.

For molecules, Rayleigh scattering is at work. Electrons and nucleus form an electric
dipole under the effect of the incoming light. This dipole emits its own electromagnetic wave
at the same frequency as the incident light. This emission is anisotropic and represented in
figure 3.1. This phenomenon explains for example the blue color of the sky.

For particles, Mie scattering is at work. Each big particle reflects some part of light. Seen
at the continuum scale, these successive reflections yield to anisotropic emission represented
in figure 3.1 (case where the radius of particles a is comparable to λ). This phenomenon
explains for example the white color of the cloud or the snow.

Figure 3.1 – Mie and Rayleigh directions of backscatter.

2The range of size is actually quite large for aerosols, with various concentration, from 0.01µm to 100µm.

60



In the atmosphere, each layer will add its part of scattering. Each layer will also absorb
a bit of energy and let some light go through to the next layer. This is represented in figure
3.2. The lidar sends a light wave in the atmosphere and measures the backscattered part.
Absorption, transmission and scattering take place on the way back too.

Figure 3.2 – Backscatter of light by particles and molecules in the atmosphere. Each layer
transmits, absorbs and scatters the light. The amount of light coming back to the lidar is
thus very small.

None of this interactions with the medium change the wavelength of the light. But if the
particles responsible for the backscatter are moving, there will be a Doppler effect. In the axis
of the beam (the line of sight), the wind blowing towards the lidar will increase the frequency
of the wave, while it decreases the frequency when blowing away. The Doppler equation is
the following:

∆νd = 2vlos
λ

(3.1)

with ∆νd the Doppler frequency shift, vlos the wind speed component in the line of sight and
λ the wavelength of the light. The Doppler shift in the frequency of the light coming back is
measured and this give the wind component in the line of sight. It is very important to keep
in mind that a Doppler lidar measures only the wind in the line of sight. It is a limitation
known as the Cyclops dilemma: how to find a 3D wind with only one direction of measure?
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This introduction is focused on Doppler lidar but there exists myriads of different lidars.
Instead of atmosphere, some lidars point to hard targets. Such systems are simpler because
the signal coming is stronger and not diffuse. Although, they are used for many applica-
tions (altimetry, cartography, archaeology...). Some lidars focus on the Rayleigh scattering
(Rayleigh lidars) while other exploit Mie scattering. Doppler lidars are usually based on Mie
scattering because its frequency response is more accurate. Some lidars measure directly the
signal coming (direct lidar : handy for power measurement). Others measure the backscat-
tered signal mixed with a local oscillator of known frequency (heterodyne lidar: handy for
frequency measurement). Some lidars send pulses of light, while other send a continuous
wave. All these forks are represented in figure 3.3. Since only heterodyne pulsed Doppler
lidar are used in this work, from now we exclusively focus on this type of lidar.

Figure 3.3 – Basic overview of major differences in lidars. Characteristics signalized in red
are the ones of the lidar for which the filtering method is designed.

3.1.2 Lidar equation for pulsed emission

The lidar considered in this work is a heterodyne pulsed Doppler lidar. The light is emitted
by pulse and the shape of the pulse is usually assumed Gaussian, with a standard deviation
τ about few hundreds of nanoseconds (Frehlich and Yadlowsky, 1994). The pulse is emitted
in the atmosphere (emission phase), then the optic channel is let free to receive the light
coming back (reception phase), as shown in figure 3.4. This is repeated N times and the
power coming back from the N pulses is used to get a single measurement. One pulse sent
at t = 0 goes up to the distance z and comes back at the time t. This is repeated for all
atmospheric layers. The resulting power S(t) is given by the lidar equation:

S(t) = K0

∫ +∞

0
I

(
t− 2z

c

)
β(z)T (z)2

z2 dz + εt (3.2)

62



with β(z) the backscatter coefficient, T (z) = exp (−
∫ z
0 α(x)dx). the extinction coefficient and

εt a noise due to imperfection of sensors and underlying approximations.

Figure 3.4 – Illustration of lidar emission: during the time te, the lidar sends one Gaussian
pulse, then it receives during tr. This forms the acquisition time for one pulse t1 = te + tr. It
is repeated for N pulses.

If the pulse were a Dirac distribution, the power received at time t would be exactly the
contribution of the layer at distance z from the lidar (with t and z related by t = 2z/c). The
lidar equation written is terms of z is

S(z) = K0
β(z)
z2 exp

(
−2
∫ z

0
α(x)dx

)
+ εz (3.3)

The equation (3.3) has two unknowns: the backscatter coefficient β(z) and the attenua-
tion coefficient α(z). Both can be separated into a molecule and a particle contribution. This
formula highlights the role of aerosols in the lidar measurement: without aerosols, no light is
backscattered. But the amount of power coming back from the atmosphere is not the target
quantity. It is the carrier from the target information, which is the Doppler shift.
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3.1.3 Space-time ambiguity

The pulse is a Gaussian of finite duration te (Frehlich and Yadlowsky, 1994). Every layer
of atmosphere is illuminated during te. Hence the signal received at time tr sums up all the
backscattered light arriving at that time. It is representative of a chunk of atmosphere of size
∆z = cte/2. For the lidar used in this work, te is set to 400ns, which gives ∆z about 60m.

In practice, the spatial resolution is set by the number of acquisition points considered.
In the figure 3.5 is an example of signal in output of the receiver for one pulse. When the
beam is going through the telescope, a lot of light is coming back directly onto the receiver
because of parasite reflections. This is visible in the first part of the signal. Then the signal
coming back from the atmosphere is much weaker. It is sequenced into chunks (so-called
range gates), displayed in the figure. On the example of figure 3.5, vertical levels are about
30 meters. The choice of the range resolution is thus a trade-off between the quality of the
spectrum estimation and the spatial resolution of the lidar. The number of points in a single
gate is denoted M in the literature (Dabas, 1999).

Figure 3.5 – Example of signal coming back from one pulse. The area of big signal at the
beginning is the reflection on the telescope. The temporal signal is divided into chunks to
isolate vertical levels. Data from lidar WindCube V2: N = 1000 pulses, 1024 points per
pulse, ∆z = 30m, M = 49 points per vertical level.
Figures made with real data from a WindCube V2. Courtesy of Leosphere for the summer school Lidar for

geophysics (Aspet, 2015).

As one can see in figure 3.6 the signal measured in the i-th range gate (that is to say
measured between times tir and ti+1

r ) comes from the volume of atmosphere between z0 and
z0 + ∆z. The spatial resolution ∆z is mostly driven by the size of the range date.
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Figure 3.6 – Illustration of time-space ambiguity to due the temporal extent of the pulse and
the temporal subdivision of the signal into range gates.

As a consequence, the lidar measure is not punctual. The measurement of wind at a given
range is the average wind on ∆z meters along the line of sight.

3.1.4 Heterodyne detection

Heterodyne detection, conversely to direct detection, does not provide intensity measurement.
It intents to measure better the frequency shift of the signal. Indeed, the pulse sent in the
atmosphere represented in figure 3.4 is a pulse of intensity of the electromagnetic wave. But
this electromagnetic wave has a frequency given by the wavelength of the emitting laser.

Figure 3.7 – Principle of heterodyne detection: an auxiliary wave is added on the receiver
to improve frequency retrieval. The order of magnitude are νe ' 300 THz, νr = νe + ∆νd,
ν0 = νe + ∆ν0 with ∆ν0 and ∆νd about few MHz.
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The emitted signal Se is an electromagnetic wave of frequency νe. In complex notation
(complex denoted i =

√
−1), it can be written as follows:

Se(t) = Eee
−2πi(νet+ϕe) (3.4)

Similarly, the local oscillator and the backscattered signal are written as follow:

S0(t) = E0e
−2πi(ν0t+ϕ0) (3.5)

Sb(t) = Ebe
−2πi(νbt+ϕb) (3.6)

with νb = νe+∆νd (the frequency of the backscattered wave shifted by the Doppler effect) and
ν0 = νe + ∆ν0 (the local oscillator has the same frequency as the emitter shifted by a known
value ∆ν0). The receiver is only sensitive to illuminance Er(t) = |Sr(t)|2. The illuminance of
a single wave is constant.

Er(t) = |S0(t) + Sb(t)|2

= |S0(t)|2 + |Sb(t)|2 + 2< (S0(t)Sb(t)∗)
= E0 + Eb + 2< (S0(t)Sb(t)∗)

The two first terms vary with very low frequency. The only term left with rapid variation
over time is the interference term. It is the term from which we get the Doppler shift. Indeed,
it is written as follows (the superscript ∗ denotes the complex conjugate).

2< (S0(t)Sb(t)∗) = 2<
(
E0Ebe

−2πi((ν0−νb)t+ϕ0−ϕb)
)

= 2E0Eb cos (2π ((ν0 − νb)t+ ϕ0 − ϕb))

Then, the signal in output of the receiver (Er(t)) is a single sinusoid of frequency ν0−νb =
∆ν0 − ∆νd. The spectrum of Er(t) is thus a Dirac at the frequency ∆ν0 − ∆νd. Since ∆ν0
is known, ∆νd is measured as soon as one gets the position of the peak in the spectrum of
Er(t). The role of ∆ν0 is to enable the lidar to distinguish the cases ∆νd > 0 and ∆νd < 0.
If ∆ν0 = 0, the sign of ∆νd is lost because cosine is a pair function.

In practice, the spectrum of the output signal is not such a strong peak but rather some-
thing like in figure 3.8. There are peaks in the spectrum, but it is not clear which are due
to noise and which are due to Doppler. To sort the noise out, the spectrum is averaged over
many pulses. Figure 3.9 is an example of 1000 pulses averaged. The Doppler peak is clear,
and can thus be estimated precisely. However, the ground level of the spectrum is noticeably
high, which denotes a poor signal-to-noise ratio. The noise is due to the random arrival of
photons. Photons reach the receiver at a random time, which makes the so-called shot noise.
The shot noise look strong in the figure 3.9 because the signal itself is really small.
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Figure 3.8 – Example of spectrum of the out-
put signal for one pulse. The Doppler peak is
drawn into noise.

Figure 3.9 – Average of 1000 spectra, corre-
sponding to 1000 pulses. The peak due to
the Doppler shift is clearly visible, despite a
strong noise base (shot noise).

Figures made with real data from a WindCube V2. Courtesy of Leosphere for the summer school Lidar for
geophysics (Aspet, 2015).

3.1.5 Frequency analysis

To find the peak visible in figure 3.9, the technique is called adapted filtering. We explain only
the technique used here but various options exist (Levin, 1965; Dabas et al., 1999, 2000). We
consider a pass-band window multiplied to the spectrum. An example of window is provided
in figure 3.10. It is known as Levin window. It has for equation

h(ν) = 1

1 + A√
2πσe

− ν2
2σ2

The product of h(ν) with the spectrum will have a minimum integral when the window is
centred on the peak, as illustrated in figure 3.11. Hence, the convolution of the window and
the spectrum (equation 3.7) will be minimum at the frequency of the peak.

(h ∗ s)(ν) =
∫
s(f)h(ν − f)df (3.7)

The Doppler shift is then obtained by taking the frequency where the convolution is minimum:

∆νd = ∆ν0 − argmax {(h ∗ s)(ν)}
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Figure 3.10 – Example of window for adapted filtering (Levin window).

Figure 3.11 – Illustration of adapted filtering. A window is convolved to the spectrum and
the peak is found at the minimum of the convolution.
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3.1.6 Carrier-to-noise ratio estimation

The signal out of the receiver is poisoned by noise. The perfect signal Er(t) is added with a
noise nt.

Es(t) = Er(t) + nt

The power of the signal Es(t) can be decomposed in the sum of the power of Er(t) and the
power of the noise.

Ps = Pr + Pn

with Ps = E
[
|Es(t)|2

]
, Pr = E

[
|Er(t)|2

]
and Pn = E

[
|nt|2

]
.

The signal-to-noise ratio (SNR) is defined as

SNR = Pr
Pn

The SNR compares the signal received from the atmosphere with the noise. In heterodyne
detection, only the Doppler peak is valuable in the signal. The signal coming back from the
atmosphere is just a carrier for the Doppler shift. That why it is more correct to talk about
carrier-to-noise ratio (CNR):

CNR = PDoppler
Pn

As the signal is only a peak located on the spectrum, the convolution (3.7) is assumed to
remove all the signal when the window is centred on the peak. At this point, in the figure
3.11 (right panel), the grey area is assumed to be PDoppler and the dotted area is assumed
to be Pn. Hence the CNR is estimated at the same time as the Doppler shift, with adapted
filtering too.

ĈNR =
∫
s(ν)dν −min {(h ∗ s)(ν)}

min {(h ∗ s)(ν)}

3.1.7 Uncertainty on wind measurements

As we have seen in the previous section, the wind measure is done as follows. The lidar sends
N pulses in the atmosphere. For each pulse, the signal out of the receiver is sampled at the
frequency 1/Ts3 (Ts about 10−6 seconds). The signal of one pulse is sequenced into slices
of M points corresponding to vertical levels (see figure 3.5). On the M points of a single
slice, the spectrum is computed (see figure 3.8). This is repeated for the N pulses and the
N spectra are averaged (see figure 3.9). Then the Doppler shift is found by adapted filtering
(see figure 3.11).

To qualify the uncertainty on the wind measurement, it is common to distinguish the
3In reality, the signal out of the receiver is analog, but it is manipulated and stored on computers after

analog-to-digital conversion.
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reliability and the accuracy. Empirically, the distribution of wind measurements appear to
be composed of a fraction b of uniform-distributed outliers and a fraction 1 − b of normal-
distributed measurements centred on the good value and with a standard deviation g. The
parameter 1−b is the reliability and the parameter 1/g is the accuracy (Frehlich, 1997, 2001).

These two parameters are function the CNR (see figure 4 of Frehlich and Yadlowsky
(1994)). For low CNR, the reliability collapses: the fraction b of outliers increases significantly.
In the meanwhile, the accuracy is degraded too. For high CNR, b is almost zero, g is the
smallest and no longer depends on CNR.

Several studies have been carried out to master the lidar error. Dabas (1999) gives a
semi-empirical model for the reliability as a function of the lidar parameters. Dabas et al.
(2000) study the bias induced by asymmetry of the pulse. Dabas et al. (1998) study the bias
due to chirp effect. O’Connor et al. (2010) give an expression of the error against the CNR
(equation 7). For the lidar used in the filtering, the order of magnitude for uncertainty is
about 0.1 m/s (according to the constructor paper Cariou et al. (2011), figure 6).

The error of lidar can be assumed Gaussian when the CNR is high enough (b is almost
zero in that case). Several theoretical expressions have been found, as well as efficient ways of
estimations. For the non-linear filtering invented by Baehr (2010), the measurement error has
to be Gaussian and a guess of its variance must be provided. In this work, the true variance
of the measurement noise is denoted σadd and the guess provided to the filter is denoted σobs.

3.1.8 TKE estimation

As lidars measure the wind in the boundary layer with fine time and spatial resolution, they
are good candidates for measurement of turbulence. In the previous chapter, we have seen
the turbulent kinetic energy (TKE) is a desired parameter. Because the lidar measures only
the component of the speed along the line of sight, the estimation of TKE is depends strongly
on the scanning geometry. The figure 3.12 shows the most common scanning strategy.

The lidar used by Rottner (2015) is a WindCube V2. It does Doppler Beam Swinging
(DBS) scans every 4 seconds. For such type of lidar, the TKE estimation is described in
(Kouznetsov et al., 2004) (the instrument is a sodar in the paper, but the retrieval is the
same). The lidar measures along 5 beams pointing respectively to north, west, south, east
with the same elevation angle ϕ. Each beam measures the wind along its line of sight: vn,
vw, vs, ve, vz. For each of these estimates, it is possible to compute a time variance: σ2

n, σ2
w,

σ2
s , σ2

e , σ2
z . Assuming the wind is homogeneous in the whole volume covered by the scan, the

estimated TKE is given by:

k̂ = σ2
n + σ2

w + σ2
s + σ2

e

4 sin2 ϕ
− σ2

z

( 1
tan2 ϕ

− 1
2

)
(3.8)

The main attractive feature of turbulence reconstruction over such estimation is to relax
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Figure 3.12 – Three common scanning geometries : PPI (Plan Position Indicator), RHI (Range
Height Indicator) et DBS (Doppler Beam Swinging).

the assumption of homogeneity. Full homogeneity is needed to get an estimation only from
geometric considerations. The reconstruction, helped by the Lagrangian model, is able to
propagate information inside the volume delimited by the beams. The strict homogeneity
is replaced by local homogeneity of the acquisition process (Baehr (2010), definition 2.1).
Moreover, the computation of the variance for each line of sight requires many lidar signals.
Typical integration time are a few tens of minutes. With the reconstruction, particles are
spatially spread, thus a spatial variance can be calculated at each time step, that is to say
every 4 seconds for this lidar.

The filtering method is tested in the 1-dimensional case. Hence, only vertical staring
Doppler lidar data are used. Since only one component of the wind is available, the proper
TKE is not reachable because the two horizontal components of the wind are missing. Nev-
ertheless, we will still do the misuse of language to call TKE the half variance of the vertical
component.

kz,t = 1
2E
[
(Vz,t − E [Vz,t])2

]
Without particles, it is estimated with a time variance

kTz,t′ = 1
2
(
Vz,t − Vz,t

τ
)2τ

With particle, it is possible to calculate a space variance, which has much higher temporal
resolution.

kSz,t = 1
2
〈

(Vz,t − 〈Vz,t〉)2
〉

with t the "fast" time counter (every 4s) and t′ the "slow" time counter (∼ 10 minutes). Such
TKE estimates are presented in the chapter 1 with comparison and comments (see page 27).

This section presented the principle of measurement of the lidar instrument for curious
novice. The key points that will have consequences in the following are that the lidar measures
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only the wind component in the line of sight. Since our lidar points vertically, only the
vertical velocity is measured. No information about the horizontal wind can be found with
such scanning geometry.
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3.2 Material

3.2.1 Data and field experiment

The filtering method have been applied to real lidar data coming from a field campaign
called BLLAST. Briefly, the BLLAST experiment (for Boundary Layer Late Afternoon and
Sunset Turbulence) is a research program accompanied with a field measurement campaign
gathering many actors (up to 26 institutes in 9 countries) that aims to describe the late
afternoon transition of the atmospheric boundary layer by using large eddy simulations and
a wide range of instruments (Lothon et al., 2014). The Doppler lidar used during BLLAST
is a WindCube 200 (from Leosphere). It is a pulsed laser emitting at a 1.5µm wavelength. It
points vertically only, providing vertical velocity measurements with a 50m spatial resolution.
These informations are summarized in the table 3.1 and further information are in Cariou
et al. (2011).

Wavelength 1.5µm
Measurement frequency 3.9s (average)
Spatial resolution 50m
Minimum range 100m
Maximum range used 800m

Table 3.1 – Basic characteristics of the Doppler lidar that provided the data.

As described in (Lothon et al., 2014), intensive observation periods (IOP) took place
during fair weather episodes, because the influence of solar radiation is enhanced. The mea-
surements period was from 14 June to 8 July 2011 with 11 IOPs over complex terrain near
Lannemezan (southern France) during fair weather episodes. The lidar was active during
several IOPs. The lidar measures up to 1800m, but it is often limited by the top of the
boundary layer (lack of aerosol or cloud base). Thus, we limited our study to the vertical
portion between 100m and 800m of altitude (where still remain missing data).

The measurements used for this work must be of very good quality because there used as
a reference in the experiments (see section 5.4.1 for the description of the experiments). The
selected measurement are during the IOP 8 (30th of June 2011), from 14:42 to 16:45 local
time (12:42 to 14:45 UTC). The figure 3.13 shows the entire IOP 8, with a shaded rectangle to
highlight the selected measurements. The meteorological conditions are fair, with intermittent
cloud cover (fair weather cumuli) and weak westerly wind. This set of nearly two hours of
data have been chosen to be in well developed turbulence, because the Lagrangian model
have been built for such conditions. Other dataset have been used occasionally (IOP 9 and
10) to test the filtering method after the development phase, but they are not included in this
manuscript. Only the missing data processing developed at this occasion is presented (next
section).

The measurement frequency is actually not constant, according to meta-data of the
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Figure 3.13 – Measurements during the IOP 8. Measurements used as reference are in the
shaded area, from 12:42 to 14:45 UTC (14:42 to 16:45 local time) and from 100m to 800m
(14 vertical levels) without missing data. Fully developed turbulence conditions.

Doppler lidar. Most of the time, it is very close to 3.9s, but sometimes the lidar stops
without notice, making time intervals very large (up to 1 hour). The reason of these stops
is the temperature regulation of the laser: under the heat of July, the laser needed to be
stopped regularly to cool down. In figure 3.14 is shown a more precise description of the time
step variation. The actual measurement time is drawn against the time step number. If the
instrument measured continuously and regularly, it should be a straight line with slope the
measurement frequency. One can see that it is not the case. More, a zoom on the small time
steps shows that they are not constant but varying around the 3.9s seconds value.

Thus, it is not correct to assume the time step as constant and some processing has to be
done to fill the large gaps between measurements with missing values. This correction will be
described in the next paragraph, as the irregular measurements issue.
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Figure 3.14 – Measurement times are not regular. The blue line is the actual measurement
time, drawn against the time step number, the time step length is in red. A zoom on the
small time steps shows that they are not constant. Some jumps have to be filled with missing
values (NaN).

3.2.2 Missing data processing

Working with real measurements raises the question of how to deal with missing data? Al-
though the final dataset (figure 3.13) is free of missing data, the filtering algorithm have
been tested on others datasets (the entire IOP 8, 9 and 10) and these IOP suffer from miss-
ing data. The following process has been built to apply the reconstruction method to this
datasets. Since this process is specific to the reconstruction system, some elements evoked
here might be presented together later ("selection step", "estimated quantities At and εt"), at
the chapter 5. They have been presented separately in the previous chapters. The missing
data processing presented here is included in the patent Baehr et al. (2016).

Missing data can disturb a code computation, or even make it crash. Even if no trouble
occur in the computer experiment, missing data can still introduce statistical malfunctions
(e.g bias, misinterpretation...). The question to solve in the presence of missing data is then
double:
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• How to overcome missing data issues in the computer experiment?

• What is the effect of missing data and their processing on the output?

The first question will be answered in this section, for this specific computer experiment.
First, issues are classified and an idea of the processing is given. Then, the complete processing
is illustrated on an example.

The second question is expected to be "none". But a devoted experimental setup is needed
to provide such an answer, and this work has not been carried out here. However, the Bayesian
filtering uses two sources of information (observation and model). So we can think that when
the observation is missing, the model can complete the information in a statistically correct
way.

The missing data community (Schafer and Graham, 2002; Rubin, 1976) is mostly oriented
toward statistics, medicine or social sciences practitioners. They also use the Bayesian frame-
work, mostly to complete the data set with non poisoning values (so-called data imputation).

3.2.2.1 Classification and idea of processing

In this work, we distinguished two types of missing data issues, shown on the example of
figure 3.15.

• Missing values: measurement value is not present but signalized as such (NaN).

• Irregular measurements: the time between two consecutive measurements is unusually
long.

Missing values can be of two kinds : missing at random or device-dependent. The data
missing at random are due to punctual malfunction affecting every measurement device. The
device-dependent missing data are due to the limitations of the measurement device. For
Doppler lidar, the most common sources of device-dependent missing data are range limita-
tions due to lack of aerosols and obstruction by rain or cloud droplets. The reconstruction
system should not be affected by few missing values. But when there are too many missing
values, there is no longer sense to filter unavailable data.

Outliers are detected with a simple thresholding (threshold value : 12 m·s−1 for vertical
velocity without deep convection) and marked as missing. Then, they are treated like the
other missing values.
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Figure 3.15 – Illustration of the different categories of missing data on the data from IOP 9.

3.2.2.2 Irregular measurements processing

We have seen in figure 3.14 that the time is not constant, with sometimes a long time (up to
1 hour) between two consecutive measurements. They might be due to external events, easily
detectable, but rarely recorded (power cut, temperature regulation, wiper action, operator
intervention...). To solve this issue, we have chosen to fill the time interval without measure
with missing values, and then we are back to the missing values problem.

This process is illustrated by the figure 3.16. Irregular measurements are detected by
looking at the real time difference between the measurements. When it exceeds a given
threshold, a gap is detected. This threshold has been chosen as

∆tgap detection = 2 min {∆trawn , n ∈ [[1, N raw
t ]]} (3.9)

where ∆trawn = trawn − trawn−1 is the time difference between two consecutive measurements, as
given by the instrument. This choice ensures that the irregularity of the measurement time
does not cause aliasing.

When a gap is detected, extra measurements instants are introduced with missing values.
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The number of virtual measurements N extra is chosen in order to ensure that the resulting
time step stay close to a characteristic time step, denoted ∆t.

N extra =
⌊∆trawn

∆t

⌋
− 1 (3.10)

where b·c denotes the floor function.

The virtual measurements are distributed regularly, each ∆tloc, within the gap. It is pos-
sible to demonstrate that ∆tloc is bounded, with extremum boundaries given by inequalities:

∆t 6 ∆tloc 6 2∆t (3.11)

The characteristic time step must be representative of the time steps without irregular
measurements. We took the median of the raw time steps which do not exceed the gap
threshold.

∆t = median {∆trawn , ∆trawn 6 ∆tgap detection, n ∈ [[1, N raw
t ]]}

Figure 3.16 – Illustration of irregular measurement issues: the gap is filled with missing values.
The N extra new points are spread regularly. N extra is chosen such that the corrected time
step is close to the median time step.

Irregular measurements are then treated as missing data. The missing data processing
relies on the assumption that missing data are noticed, which is not the case for irregu-
lar measurment. Thus, irregular measurement processing is done prior than missing data
processing.

3.2.2.3 Missing values processing

When measurements are missing, different processes are made according to the length of the
series of consecutive missing values.
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In the case of long series of missing observation, the system is stopped and restarted at the
next available observation. Without control of observation, the model degenerates quickly.
The purpose of reconstruction, which is information retrieval from observation, no longer
makes sense. The threshold in use to discriminate tolerable length of missing observation
series is

∆trestart = 8∆t (3.12)

For tolerable length of missing data, we trust the Lagrangian model to give reliable in-
formation. But the management of the particles changes when there is information to check
them. The following changes are done

• Selection step is skipped.

• No update of estimated quantities (At and εt)

• Modulation of turbulent frequency by a "forget coefficient", decreasing as a Gaussian.

These changes are theoretically coherent with the system and enables it to run correctly. But
more purpose-oriented experiments are needed to assess precisely the effect of these choices
on the results.

3.2.2.4 Summary and illustration

Missing data processing is illustrated on an example. In the figure 3.17, three timelines of an
toy data set are chosen. Missing value are represented as grey rectangles.

• (A) : meta-data from the instrument (location of known missing data).

• (B) : (A) after irregular measurements processing.

• (C) : (B) after removing missing observation series where a restart is required.

On the C timeline, only the tolerable missing observation series remain. Too large series of
missing data have been removed by re-initializing the reconstruction. They are treated as
mentioned before: selection skipped, "forget coefficient". To illustrate the processing between
A and C, we focus on 4 particular cases (pointed by numbers in parenthesis on the figure
3.17).

1. Isolated missing values, not necessitating a restart. The processing does not affect them.

2. Wide irregular measurement: a large time between 2 consecutive measurements has
been filled with missing values (see timeline B). The gap is large enough to necessitate
a restart (see timeline C).
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3. The gap between the consecutive measurements is filled with missing values (timeline
B). Added to already present missing values, it requires a restart.

4. Small irregular measurement: the gap filled by missing values is small and does not
necessitate a restart (timeline C).

Figure 3.17 – Illustration of missing data processing.

3.3 Conclusion

The heterodyne pulsed Doppler lidar has been presented. It emits light pulses and between
two emissions, it detects their echo from the atmosphere. The signal comes back because of
particles backscatter. The movement of particles with wind induces some Doppler shift on
the light coming back. This Doppler shift is measured thanks to heterodyne detection and
adapted filtering. It has been underlined that the lidar measures only the component of wind
along the line of sight. The measure is not punctual but averaged on a given range gate.

The uncertainty of the measurement is an subject of intensive research. Some references
have been given and commented. The reconstruction intends to improve the lidar mea-
surements, especially when they are noisy. Turbulence estimations depend on the scanning
strategy, but usually assume frozen wind field in the whole volume analysed by the lidar. The
reconstruction needs weaker assumptions to provide fast spatial variance of wind. But such
spatial variance must be compared to TKE.

The data used for this work come from the BLLAST field experiment. They have been
measured the 30th of June 2011 by a WindCube 200. Several days suffer from missing data.
We distinguish irregular measurements, device-dependent missing values and values missing
at random. Irregular measurements are filled with missing values. For large areas of missing
values, it does not make sense to apply the reconstruction, hence the system is switch off until
the next available measurement. For small areas of missing values, a stratagem has been set
up to avoid the system to crash and side effect on the estimations. The described stratagem
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is included in the patent Baehr et al. (2016). Since the effect of such stratagem has been
assessed, it was not applied in this work (the data set was chosen free of missing data).
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Chapter 4

Sensitivity analysis theory
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4.1 Introduction

Sensitivity analysis is the quantitative study of the influence of inputs on outputs. A computer
code usually depends on many settings to run. When it comes to assess the way these settings
impact the output of the code, it comes to sensitivity analysis. Jacques (2005) sums up the
added value of sensitivity analysis in 4 goals:

Check. For instance, when a parameter overwhelms the other, it may point a malfunction
in the model (an error of units, a bypass of some function...).
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Simplify. Parameters weakly influencing the code can be set to a fixed value.

Error reduction. Conversely, once the most influential inputs are known, it is easier to set
a method to reduce the error induced by these settings.

Understand. Sensitivity analysis highlights objectively the effect of the settings and the
interactions among them. It also requires a rationalisation of the system (to list inputs
and outputs, to question their relevance). All of this brings a better understanding of
the system.

Several approaches are possible, depending on the system and especially on the cost to
run the code. For a review of techniques before 1994, see Hamby (1994). For a more recent
review, see Iooss and Lemaître (2015).

The first idea coming in mind is usually to make the inputs move one at a time. By doing
this, one is sure that the output variation is not polluted by the move of another input which
cannot be attributed. Such methods are called OAT (One At a Time) (Saltelli and Annoni,
2010). They suffer from many drawbacks, the main one being the choose of the value at which
the non-moving inputs are set. For example, considering the following model

Y = X2
1 sin(2πX2)

As long as X2 is set to an integer value, the output is 0 whatever is the value of X1. Thus
the study will conclude to a null influence of X1. This example highlights two majors points
in sensitivity analysis:

• Inputs must move all together.

• Inputs values must be non-regular and cover all the space.

Variance-based sensitivity analysis starts with the definition of Sobol indices Sobol’ (1990);
Sobol (1993). It is very useful in modelling (Saltelli et al., 2000), to rank inputs by order of
importance (Saltelli, 2002b). When the computer code is heavy to run, a common strategy
is to create a surrogate model (Marrel et al., 2009). When the code is stochastic (when
some inputs are uncontrollable, for instance), the variance due to the random seed must be
taken apart (Marrel et al., 2012). When the code is providing several outputs (vector output,
or functional output), Sobol indices have a different form (Gamboa et al., 2014). When
the inputs are not independent, generalized Sobol indices exist, but they are complicated to
estimate (Chastaing et al., 2015).

Variance-based is not the only approach to perform a sensitivity analysis. The whole
probability law can be considered in the importance measure. It results dependence measures
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based on distribution distances (Borgonovo, 2007; Da Veiga, 2015). Their advantage is to
account all effects of inputs changes, not only effects on variances.

Screening methods provide sensitivity indices inspired from the derivative of the function.
They include previously evoked OAT techniques, the Morris method (Morris, 1991), the
sequential bifurcation method (Bettonvil and Kleijnen, 1997). They are more adapted when
the computer code has a large number of inputs.

When the model is linear, many indices based on correlation exist: Pearson correlation
coefficient, standard regression coefficient (SRC), partial correlation coefficient (PCC). To
get rid of the linear assumption, the indices SRC and PCC can be estimated on the ranks of
the runs1. The model no longer has to be linear, monotonic is enough. The resulting score
are standard regression rank coefficient (SRRC), partial rank correlation coefficient (PRCC)
(Iooss and Lemaître, 2015; Jacques, 2005).

The model can be approached by a projection onto a basis of functions such that the
sensitivity indices are given analytically. The Fourier Amplitude Sensitivity Test (FAST)
gives analytical sensitivity indices from the Fourier coefficients of the model transformed by
a change of variable (Cukier et al., 1978). The polynomial of chaos gives gives analytical
sensitivity indices from the coefficients of the polynomials fitting the best with the model
responses (Sudret, 2008). The analytical formulae of such methods reduce the amount of
calculus for the sensitivity indices estimation, but they rely on a good approximation of the
model with the chosen basis of functions.

The sensitivity analysis carried out in this work is variance-based. It consists in the
estimation and the interpretation of Sobol indices of first and second order. This chapter
gives a state-of-the-art of the variance-based sensitivity analysis. First, it is presented from
a theoretical point of view (variance decomposition, definitions of Sobol indices). Then, the
way of estimation is stated (three estimators of Sobol indices, uncertainty of the estimation).
Eventually, the meta-modelling of the system is presented.

4.2 Variance-based sensitivity analysis

4.2.1 Notations

The computer code takes p parameters in input and deliver one output. Hence the computer
code is seen as a function from Rp to R

f : Rp → R
X 7→ Y = f(X)

1Given a sample of N runs of the computer code, the output vector contains N values. When this vector
is sorted increasingly, the rank of a run is its place in the sorted vector.
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In this section, variablesX and Y will be denoted in lower case when they are deterministic
and in upper case when they are random. For the indices, we stick to the notation used in
Chastaing (2013) that are recalled here:

• [[1, p]] = {1, . . . , p}

• I is the collection of all subset of [[1, p]] (thus of cardinal 2p).

• u is an element of I.

• | · | the cardinal of the set "·". For example, |u| is the number of indices in u ; and |I|
is the number of groups of indices in I (|I| = 2p).

• For all u ∈ I, it is denoted ū = [[1, p]] \ u = {i ∈ [[1, p]], i /∈ u}

• For all u ∈ I, it is denoted Xu = (Xi, i ∈ u) the vector extracted from X.

• When it exists (assumed true by default), probability density function of Xu is denoted
pXu , for all u ∈ I.

To order the elements in I, the convention is to use the lexicographic order from left to
right (order of the dictionary). For instance, for p = 3 :

I = {∅, {1}, {2}, {3}, {2, 1}, {3, 1}, {3, 2}, {1, 2, 3}}

The proofs are postponed to the appendix B.2. They are adapted from (Chastaing, 2013).

4.2.2 Deterministic case (ANOVA functional decomposition)

We consider a deterministic function f with arguments range in [0, 1] (it is equivalent to
consider that they lie in a bounded interval, by means of a normalization).

Theorem 4.1 (ANOVA decomposition). Let f : [0, 1]p → R be an integrable function. Pre-
vious notations hold.
Then, there exists a unique decomposition of f :

f(x) =
∑
u∈I

fu(xu)

= f∅ +
p∑
i=1

fi(xi) +
∑

16i<j6p
fij(xi, xj) + · · ·+ f1,...,p(x1, . . . , xp)

(4.1)

such that
∀u ∈ I, ∀i ∈ u,

∫ 1

0
fu(xu)dxi = 0 (4.2)
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The proof of this theorem has been first made by Sobol in Sobol (1976), using Fourier-
Haar decompositions. Then a simpler version is in Sobol (1993). A proof adapted to our
notations is the appendix B.2.1.

One can show the functions in the decomposition are orthogonal (proof of proposition in
the appendix B.2.2).

Proposition 4.1 (Orthogonality in ANOVA). Let f : [0, 1]p → R be integrable and (fu)u∈I
the functions of its ANOVA decomposition. Then,

∀u,v ∈ I, u 6= v,
∫

[0,1]p
fu(xu)fv(xv)dx = 0 (4.3)

The decomposition which has been proven is called ANOVA (ANalysis Of VAriance). It is
the basis for the definition of sensitivity indices. Each terms of the decomposition is function
of one group of inputs only. The effect of other inputs or other group of inputs manifests
through another term in the decomposition. The uniqueness of the decomposition is of first
importance. Without uniqueness, it is not possible to attribute the variance to a term of the
decomposition.

4.2.3 Variance decomposition

The ANOVA decomposition is extended to the stochastic case. Let X be a random vector of
law ηX . The components of X are assumed independent. Thus

ηX = ηX1 ⊗ · · · ⊗ ηXp

The output is the random variable Y = f(X). The aim is to find a set of functions that
gives the same decomposition as in the deterministic case. Such functions must have several
properties, which define the space they belong. These space are Hoeffding spaces.

Definition 4.1 (Hoeffding spaces).

With words Hu contains functions of Xu for which the resulting random variable has
finite variance. H0

u is the subset of Hu for which the expectation of the resulting random
variable conditioned to Xv is zero for any v with a cardinal smaller than |u|.

Formally ∀u ∈ I

Hu =
{
hu(Xu), E

[
hu(Xu)2

]
< +∞

}
⊂ L2(R, ηXu)

H0
u = {hu(Xu) ∈ Hu, ∀v ∈ I, |v| < |u|, E [hu(Xu)|Xv] = 0}

By convention, H∅ and H0
∅ stand for the set of constant functions, and E [hu(Xu)|∅] =

E [hu(Xu)].
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The spaces H0
u, u ∈ I are orthogonal (proof in the appendix B.2.3).

Proposition 4.2 (Orthogonality of Hoeffding spaces).

∀u,v ∈ I,u 6= v, H0
u ⊥ H0

v (4.4)

With projectors, any finite variance real-valued random variable can be projected onto
the spaces H0

u. The ensuing decomposition can be expressed thanks to orthogonality.

Lemme 4.1 (Hoeffding projection). Considering

• X1, ..., Xp independent random variables.

• T ∈ L2(Ω,R) (real random variable of finite variance E
[
T 2] < +∞).

Then, for all u ∈ I, the orthogonal projection of T in H0
u in written

πH0
u
(T ) =

∑
v⊂u

(−1)|u|−|v|E [T |Xv] (4.5)

The proof is in the appendix B.2.4. This lemma allows a functional decomposition of f
of the same form of ANOVA.

Theorem 4.2 (Hoeffding decomposition). Let Y : (Ω,F ,P)→ (R,B(R)) et X : (Ω,F ,P)→
(Rp,B(Rp)) such that Y = f(X) with f : (Rp,B(Rp)) → (R,B(R)), a measurable function.
Previous notations hold.
Under the following assumptions :

1. Y has a finite variance (i.e. E
[
Y 2] < +∞).

2. The inputs Xi, i ∈ [[1, p]] are independent : pX(x) =
∏p
i=1 pXi(xi).

Then it exists an unique decomposition of Y with respect to (Xi)i :

Y =
∑
u∈I

fu(Xu)

= f∅ +
p∑
i=1

fi(Xi) +
∑

16i<j6p
fij(Xi, Xj) + · · ·+ f1,...,p(X1, . . . , Xp)

(4.6)

such that
∀u ∈ I, fu(Xu) =

∑
v⊂u

(−1)|u|−|v|E [Y |Xv] (4.7)

The proof is in the appendix B.2.5. The expression of the decomposition is the same as in
theorem 4.1 with the difference that the hypothesis on which it relies are weaker and suitable
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to random variables. It also gives an expression of the terms in the decomposition, which is
a valuable result in order to find numerical estimations.

This decomposition is used for the definition of sensitivity indices. The sensitivity of Y
with respect to the inputs (Xi)i is measured by its variance. By taking the variance of the
decomposition, one can have a decomposition of the variance of Y into terms which can be
attributed to a group of inputs. From such decomposition, one gets the Sobol indices.

Corollary 4.1. Under the same assumptions than the theorem 4.2,

V (Y ) =
∑
u∈I

V (fu(Xu)) =
∑
u∈I

(
V (E [Y |Xu]) +

∑
v⊂u

(−1)|u|−|v|V (E [Y |Xv])
)

(4.8)

The proof is in the appendix B.2.6. Given a group of inputs u, the proportion of variance
attributed to this group will be its sensitivity index. The proportion of variance attributed
to a group is the corresponding term in the ANOVA decomposition.

4.2.4 Sobol indices

The most general form of Sobol indices results from the Hoeffding decomposition (theorem
4.2). As the variance V (Y ) can be estimated by many efficient ways, it is sometimes clearer
to use only the unnormed Sobol indices. The cardinal of the group u is called the order of
the indices. The indices ensuing directly from the corollary 4.1 (so-called "simple" or "main
effect" Sobol indices) are the basis to build others, with different interpretations.

Definition 4.2 (Simple Sobol indices).

With words The simple Sobol index (or main effect Sobol index) of a group of inputs
u is the proportion of the output variance attributed to this group.

Formally ∀u ∈ I, u 6= ∅,
Su = V (fu(Xu))

V (Y )
Du = V (fu(Xu))

Total Sobol index is a score for the influence of the group u including all order of interac-
tion. They have been introduced by Homma and Saltelli (1996).
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Definition 4.3 (Total Sobol indices).

With words The total Sobol index of a group of inputs u is the proportion of the output
variance attributed to this group and to all the groups in which its members are involved.

Formally ∀u ∈ I, u 6= ∅,
STu =

∑
v∈I

v∩u6=∅

Sv

DT
u =

∑
v∈I

v∩u6=∅

Dv = V (Y )STu

Complete Sobol index is a score for the influence of the group u up to its maximal order
of interaction.

Definition 4.4 (Complete Sobol indices).

With words The complete Sobol index of a group of inputs u is the proportion of the
output variance attributed to this group and to all the subgroups in u.

Formally ∀u ∈ I, u 6= ∅,
SCu =

∑
v∈I
v⊆u

Sv

DC
u =

∑
v∈I
v⊆u

Dv = V (Y )SCu

For example, if p = 3 and u = {1},

D1 = V (f1(X1)) = V (E [Y |X1])

DT
1 = D1 +D1,2 +D1,3 +D1,2,3

DC
1 = D1

If p = 3 and u = {1, 2},

D1,2 = V (f1,2(X1, X2)) = V (E [Y |X1, X2])− V (E [Y |X1])− V (E [Y |X2])

DT
1,2 = D1 +D2 +D1,2 +D1,3 +D2,3 +D1,2,3 = V (Y )−D3

DC
1,2 = D1 +D2 +D1,2 = V (E [Y |X1, X2])

Using the analytical expression of the decomposition functions (theorem 4.2), one can
write analytical expressions of such indices (proof in appendix B.2.7).
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Proposition 4.3. Let u ∈ I. With the notation introduced above, simple, total and complete
Sobol indices have the following expression :

Du = V (E [Y |Xu]) +
∑
v⊂u
v 6=u

(−1)|u|−|v|V (E [Y |Xv]) (4.9)

DC
u = V (E [Y |Xu]) (4.10)

DT
u = V (Y )− V (E [Y |Xū]) (4.11)

For first order Sobol indices, the formula of the simple Sobol indices is much simpler since
there is no second term.

Si = V (E [Y |Xi])
V (Y ) (4.12)

First order simple and complete Sobol indices are equal. Total Sobol indices reckon with all
the effects of the input, including all order interactions. Thanks to proposition 4.3, they are
written as follow.

STi = 1−
V
(
E
[
Y |X[[1,p]]\i

])
V (Y ) (4.13)

Beside their interpretations, some properties ensue from the definitions of Sobol indices.
They help to check the quality of the numerical estimations.

Proposition 4.4 (Basic properties of Sobol indices).

∀u ∈ I, Su > 0
∑
u∈I

Su = 1
p∑
i=1

Si 6 1
p∑
i=1

STi =
∑
u∈I
|u|Su > 1

4.2.5 When inputs are not independent

The previous theorems and definition are based on the assumptions that inputs are indepen-
dent. Since in most cases the inputs values are given by pseudo-random number generator, it
is reasonable to assume them independent. Nevertheless, one can imagine a computer code
for which the inputs are known to be dependent. In this case, either grouping some variables
can make the inputs independent (as suggested by Jacques et al. (2006)), either it is necessary
to get rid of the independence assumption. But there is nothing left in the previous results
when the inputs are not independent. Keeping the independence assumption is convenient,
at the risk of deliberately ignore the dependence. For those who cannot take that risk, there
exist solutions, more complex than the previous, that we will quote without the proofs.

In the works of Gaëlle Chastaing (Chastaing, 2013; Chastaing et al., 2012, 2015) are
defined generalized Sobol indices. These indices can be interpreted even with dependent
inputs and they stick to usual Sobol indices when the inputs are independent. In order to

91



complete this state-of-the-art, we give here the necessary hints to come out on generalized
Sobol indices. The complete proofs are in the aforementioned papers.

The independence assumption is replaced by the two next assumptions:

(H1) ηX � Λ, where Λ stands for Lebesgue measure.

(H2) ∃M ∈]0, 1], ∀u ∈ [[1, p]], pX >MpXupXū

The construction of generalized sensitivity indices rely on a functional decomposition hi-
erarchically orthogonal. Hierarchically orthogonal signifies the orthogonality holds for some
groups of functions organized hierarchically. The adjective hierarchical refers to the organi-
sation of indices.

Definition 4.5 (Hierarchical collection of indices).

With words A collection of indices T ⊂ I is said hierarchical when all sub-groups of
indices taken in an element of T is in T .

Formally
∀u ∈ T, ∀v ⊂ u, v ∈ T

For example, if the code has p = 3 inputs. We have seen that

I = {∅, {1}, {2}, {3}, {2, 1}, {3, 1}, {3, 2}, {1, 2, 3}}

Then the collection of indices T = {{1}, {2}, {2, 1}} is hierarchical. Ideed, if one takes u =
{1, 2}, then {1}, {2}, {2, 1} ⊂ u, and {1}, {2}, {2, 1} ∈ T .
Similarly, if one takes u = {1}, then only {1} ⊂ u, and {1} ∈ T

Lemme 4.2. Let T ⊂ I be a hierarchical collection of indices. Under the hypothesis (H1) et
(H2).
It is denoted δ = 1−

√
1−M ∈]0, 1]. Then, ∀u ∈ T, ∀hu ∈ H0

u,

E

(∑
u∈T

hu(X)
)2
 > δ|T |−1 ∑

u∈T
E
[
hu(X)2

]
(4.14)

92



Theorem 4.3 (Stone decomposition). Let f be a function in L2(Rp, ηX). Under the hypoth-
esis (H1) et (H2).
Then, it exists a unique family of functions (fu)u∈I such that ∀u ∈ I, fu ∈ H0

u and which
verifies

f(X) =
∑
u∈I

fu(Xu)

= f∅ +
p∑
i=1

fi(Xi) +
∑

16i<j6p
fij(Xi, Xj) + · · ·+ f1,...,p(X1, . . . , Xp)

(4.15)

Definition 4.6 (Generalized Sobol indices).

With words The generalized Sobol index of a group of inputs u is the proportion of
variance attributed to this group of inputs and to the inputs on which they are dependent.

Formally

∀u ∈ I, Su = 1
V (Y )

(
V (fu(Xu)) +

∑
u,v∈I

u∩v 6=u,v

cov(fu(Xu), fv(Xv))
)

One can notice that despite the formula has not changed, the theorem no longer gives an
expression for the decomposition functions fu. It only states their existence and uniqueness
(which is already a good advance). It has for consequence that the Sobol indices can no longer
be estimated by approaching conditional expectations.

Su = V (fu(Xu))
V (Y )︸ ︷︷ ︸
V Su

+

∑
u,v∈I

u∩v 6=u,v
cov(fu(Xu), fv(Xv))

V (Y )︸ ︷︷ ︸
CoSu

(4.16)

The generalized indices defined by equation (4.16) are composed of two terms with different
meanings: on one hand is the variance attributed to the group u (V Su), on the other hand
is the variance attributed to the inputs depending on the inputs in the group u (CoSu).

4.3 Estimation of sensitivity indices

4.3.1 Notations

In this section we will focus on the estimation of the Sobol index of any group of indices
u ∈ I (same notations as previously hold). In addition, the notations relative to estimation
(samples) are used for this section :
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• X = (X1, ..., Xp) is the vector of random inputs (inputs are assumed independent).

• Z = (Z1, ..., Zp) is an independent copy of X.

• Y = f(X) = f(X1, ..., Xp) is the output (also random).

• Xu = (Xi)i∈u is the vector of random inputs in u.

• Zu = (Zi)i∈u is an independent copy of Xu.

• Yu = f(Zu, Xū) is the output when the inputs in u are taken from another realisation.
For example if u = {i} (indices in u highlighted in blue):

Yi = f(X1, ..., Zi, ..., Xp)

For example if u = {1, 2, p} (indices in u highlighted in blue):

Y{1,2,p} = f(Z1, Z2, X3, ..., Xp−1, Zp)

When it comes to estimation, random variables are replaced by a sample. The aforemen-
tioned notations are slighly modified to separate exact quantities and approached quantities.

• m is the size of the sample. e ∈ [[1,m]] is the counter for the elements in the sample.

• X is the sample of m input vectors.

X = (x1, ...,xp) =


x1

...
xm

 =


x1

1 . . . x1
p

...
...

xm1 . . . xmp


• Z is an independent copy of X.

• ye = f(xe) is the output of the experiment e.

• Y = f(X) is the output vector for all experiments.

• Xu = (xi)i∈u is the sub-matrix of X with only the inputs in u. Same for Zu.

• Yu = f(Zu,Xū) is the output vector resulting from the m experiments with the inputs
in u are taken from another sample. For example if u = {i} and if u = {i, j} (indices
in u highlighted in blue):

Yi =


f(x1

1, ..., z
1
i , ..., x

1
p)

...
f(xm1 , ..., zmi , ..., xmp )

 Yi,j =


f(x1

1, ..., z
1
i , ..., z

1
j , ..., x

1
p)

...
f(xm1 , ..., zmi , ..., zmj , ..., xmp )


First, Sobol indices estimators are written theoretically (in terms of random variables).

Then, practical estimators are derived from them.
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4.3.2 Some estimators for Sobol indices

In the previous section, the theoretical definition of Sobol indices were given (simple, total
and complete Sobol indices). Now we focus on the numerical estimation of them. Only the
complete Sobol index DC

u is considered because the others can be derived from them, thanks
to the proposition 4.3. From Janon et al. (2014) (lemma 1.2) it is known that:

V (E [Y |Xu]) = cov(Y, Yu) (4.17)

It is important to notice that Y and Yu have the same law. Moreover, since the covariance
is symmetric, they play exchangeable roles. From the definition of the covariance, one can
derive expressions suitable to estimation.

D1
u = E [f(X)f(Zu, Xū)]− E [f(X)]2 (4.18)

D2
u = E

[
(f(X)− f(Zu, Xū))2

]
(4.19)

D3
u = E [f(X)(f(Zu, Xū)− f(Z))] (4.20)

Sobol (2001) compares the two estimators (4.21) and (4.22), based respectively on the
first writtings of the covariance D1

u and D2
u. He shows that D̂u

2 has a smaller variance to
estimate total Sobol indices, while D̂u

1 has a smaller variance to estimate main effect Sobol
indices. Moreover, D̂u

2 is always positive, which avoid the estimation to be negative when
indices are small. Saltelli et al. (2010) makes a broader comparison focused on the estimation
of first order Sobol indices, and proposes the Monte Carlo estimator (4.23). Owen (2013) also
makes a comparison of several estimation strategies and proposes a new estimator with the
concern of improving the estimation of small Sobol indices. The novelty in Owen’s estimator
is to use a third copy of X.

D̂u
1 = 1

m

m∑
e=1

f(xe)f(zeu,xū)−
(

1
m

m∑
e=1

f(xe)
)2

(4.21)

D̂u
2 = 1

m

m∑
e=1

(f(xe)− f(zeu,xeū))2 (4.22)

D̂u
3 = 1

m

m∑
e=1

f(xe)(f(zeu,xeū)− f(ze)) (4.23)

For this work, Sobol indices have been computed with the opensource Python package
SALib. Only first order (main and total effect) and second order Sobol indices are calculated,
because it is enough to describe direct, pairwise and remaining influence. It uses the estimator
from (Saltelli et al., 2010) for the first order indices (main and total effect). For the second
order Sobol indices, the estimator from (Saltelli, 2002a) is used. A summary of estimators
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Estimator formula Reference

D̂i = 1
m

m∑
e=1

f(xe)(f(zei ,xeī )− f(ze)) (Saltelli et al., 2010) eq. (16)

D̂T
i = 1

2m

m∑
e=1

(f(zei ,xeī )− f(xe))2 (Saltelli et al., 2010) eq. (19)

D̂ij = 1
m

m∑
e=1

(
f(zei ,xeī )f(zej ,xej̄)− f(xe)f(ze)

)
− D̂i − D̂j (Saltelli, 2002a)

Table 4.1 – Recap of Sobol index estimates calculated in this work.

giving the results is in the rable 4.1.

4.3.3 Uncertainty on the estimation

From the definition of Sobol indices estimation, the combination of the central limit theorem
and the Delta method gives asymptotic normality (see Janon (2012), chapter 3 and the
associated paper Janon et al. (2014)).

Proposition 4.5 (Uncertainty on Sobol indices estimation). If Su is the Sobol index related
to the group u (definition ??) and Ŝu is its estimator (equation 4.21), then

√
m(Su − Ŝ1

u) L−→
m→∞

N (0, σ2
S) (4.24)

with
σ2
S =

V
(
(Y − E [Y ])

[
(Y u − E [Y ])− Su(Y − E [Y ])

])
V (Y )2 (4.25)

Although normality is a handy property, it has its drawbacks here. The property Su > 0
does not hold for the estimator Ŝu

1. For small Sobol indices especially, the estimation can be
negative, which weakens the interpretation. For example, Ŝu

2 will not give negative estima-
tion, but will not have such a theorem to describe its uncertainty.

In the results (see chapter 6) the confidence intervals are obtained by brute force estima-
tion, like Jacques (2005) page 80. The estimation is repeated 100 times, which gives a sample
of estimates. Such sample is assumed Gaussian and its variance is used to calculate the 95%
confidence interval displayed in the figures of the chapter 6.
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4.3.4 Few words about generalized Sobol indices

In the case of p dependent input random variables, the theorem 4.3 gives existence and
uniqueness of 2p functions belonging to hierarchically orthogonal spaces that allow the de-
composition of the output variance into input-related terms. However, the theorem does not
provide any expression for such functions. The only things known is that they exist, they are
unique and they live in Hoeffding spaces. But generalized Sobol indices are expressed with
these functions. To estimate them, a different strategy than previously is necessary.

In the article (Chastaing et al., 2015) a method is suggested for the numerical estimation
of generalized Sobol indices. This method consist in approaching the Hoeffding spaces by
finite dimensional spaces. To achieve this, we start from a basis of parametric functions
(polynoms, splines, harmonics...) which is orthogonalized with a variant of Gram-Schmidt
method suitable to hierarchical orthogonality. Once this basis is built, the decomposition
functions are expressed as a linear combination of the basis functions. Such fitting can be
done with least squares minimization. Next, generalized Sobol indices are estimated using the
formulae which define them. A smart choice for the basis functions would be some functions
for which the Sobol indices are given analytically from their parameters, like with polynomials
of chaos.
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4.4 Meta-modelling of the system

Meta-models or surrogate models are emulators of the system. Given a sample of responses,
they mimic the system. Instead of using a full and complex system, often costly to run, meta-
models need only a set of couple inputs-outputs calculated once and for all. Thus meta-models
are a way to by-pass high computation costs. To estimate Sobol indices, computation cost is
often crippling. A common strategy in sensitivity analysis is to build first a meta-model and
then to use the meta-model to estimate the Sobol indices. The cost of computation of the
complete system is replaced by the cost of computation of the meta-model, much cheaper.
This is what has been done for this work. The drawback of meta-modelling is to introduce
one more layer of approximation in the estimation. This section aims to present how the
meta-modelling has been carried out: by simple kriging with Gaussian isotropic variogram
and small observation noise. The meta-model was created with the meta-model sklearn
(Pedregosa et al., 2011).

4.4.1 Simple kriging

The surrogate model is obtained by kriging with Gaussian process. This technique is often
used for spatial analysis. The aim is to approach a function of space f with a Gaussian
stochastic process (see def. A.14). Only intrinsic processes (see def. A.17) are considered.
The target function f is written as:

f : Rp → R
x 7→ f(x) (4.26)

This target function is assumed to be an intrinsic stochastic process Yx = f(x) and it
is known only on several sites: f(x1), ..., f(xm). The point where the target function is
known are gathered in a matrix X where each line is a single observation site (numbered
with superscripts) and each column is a given coordinate of space for all sites (numbered with
underscripts):

X = (x1, ...,xp) =


x1

...
xm

 =


x1

1 . . . x1
p

...
...

xm1 . . . xmp

 (4.27)

We look for a linear estimator Ŷx with features fitting the best with the data. The linearity
implies the following form:

Ŷx = λ0 +
m∑
j=1

λj(x)f(xj) (4.28)

As for the Gaussian linear model, we impose conditions on the residuals: it must be of mean
zero and of minimal variance. But conversely to the Gaussian linear model, the residuals are
not supposed independent: assumption are made on the target stochastic process instead.
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The target stochastic process is at least intrinsic an two of its features are taken a priori: the
mean function and the variogram. Then, the coefficients λ0, ..., λm are chosen to ensure that

1. E
[
Ŷx − Yx

]
= 0

2. V
(
Ŷx − Yx

)
is minimum.

The first feature to choose is the mean function because it sets the type of kriging:

• E [Yx] = 0 implies simple kriging.

• E [Yx] = a, with a an unknown constant, implies ordinary kriging.

• E [Yx] =
∑
k αkgk(x), with gk parametric functions and αk unknown constants, implies

universal kriging.

Simple kriging is much simpler than other method and still have good performances even
when the target function is not centred on zero. In simple kriging, the minimization of the
variance is without constraint. It is worth to try the simple kriging in a first place. In this
work we sticked to simple kriging.

As a result of the variance minimisation, the simple kriging estimator is written:

Ŷx = c(x)TC(X)−1Y (4.29)

with c(x) =
(
cov(f(x), f(x1)), ..., cov(f(x), f(xm))

)T ,
C(X) =


cov(f(x1), f(x1)) ... cov(f(x1), f(xm))

...
...

cov(f(xm), f(x1)) ... cov(f(xm), f(xm))


and Y =

(
f(x1), ..., f(xm)

)T .
4.4.2 Gaussian isotropic variogram

The second feature to optimize is the variogram. Indeed, as Yx is an intrinsic process, for any
couple of points (x,y), the variogram is defined as

γ(y− x) = 1
2E
[
(Yx − Yy)2

]
(4.30)

The type of the variogram is specified and its parameters can be estimated to fit with the
data. It will be said isotropic when it depends only on ‖y− x‖ instead of the full vector.
The variogram is then given by a function of the real number s = ‖y− x‖. For example, a
Gaussian variogram would be of the form

γ(s) = σ2
(

1− e−
s2
2l2

)
(4.31)
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with parameters σ and l subject to fitting.

The different components of x might be not comparable (because of units for example). In
this case, the length l might not be the same for all components (we assume the sill variance
σ2 is). If we denote h = y− x and k = (1/l1, ..., 1/lp), the Gaussian variogram might be
written γ(h) = σ2

(
1− e−

1
2 k·h

)
. Such kernel is anisotropic. In this case, there are p length

scales to estimate instead of one.

In this work, the data have been normalized before doing the kriging. Each coordinate i
has been modified as follows:

x̃i = xi −minj(xji )
maxj(xji )−minj(xji )

(4.32)

The matrix X̃ = (x̃1, ..., x̃p) is used instead of X. Then the kriging performed here is isotropic.

The other advantage to make such transform is to enable a visualisation of the variogram.
The variographic swarm method (Ginsbourger (2009) section 3.2.3) aims to estimate the
variogram with the help of the set V(X):

V(X) =
{(
‖xi − xj‖, 1

2(f(xi)− f(xj))2
)
, (i, j) ∈ [[1,m]]2

}
(4.33)

The aim is to provide an estimation of 1
2E
[
(Yx − Yy)2] for several values of ‖y− x‖. The

sites where the target is known are gathered pairwise: it gives m(m − 1)/2 distinct pairs,
therefore m(m−1)/2 values of gap s = ‖y− x‖ and m(m−1)/2 values of squared increments
(f(xi)−f(xj))2. Considering a regular subdivision (s1 = 0, s2, ..., sK+1 = max(i,j) ‖xi−xj‖),
one gets an estimation of the variogram in K points: for any k ∈ [[1,K]],sk + sk+1

2 ,

∑
16i<j6m

1
2(f(xi)− f(xj))21{sk6‖xi−xj‖<sk+1}∑
16i<j6m

1{sk6‖xi−xj‖<sk+1}

 (4.34)

Such visualization is illustrated on one of the outputs defined at the next chapter (the wind
spectrum slope). The set V(X̃) is represented by the black dots in the figure 4.1. In abscissa
are the gap values s = ‖y− x‖, in ordinate are the squared increments 1

2(f(xi) − f(xj))2.
The red crosses are the average within a subdivision: they draw an empirical variogram. To
ensure the existence of mean and variance for the estimator, the variogram must be a positive-
semidefinite function. There is no reason for the empirical variogram to be admissible. Thus
we look for the closest admissible variogram. This empirical variogram is reported in figure 4.2
and compared with the Gaussian variogram obtained after fitting the parameters to the data
(by maximizing the likelihood). This figures proves that the choice of a Gaussian variogram
is relevant for this output.

On the other hand, for some output the Gaussian form is not the most relevant. For
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Figure 4.1 – Variographic swarm and empiri-
cal variogram for the output b.

Figure 4.2 – Empirical variogram and fitted
Gaussian variogram.

example, figure 4.3 shows the empirical variogram for the wind RMSE output (see chapter
5, def. 5.1 for exact definition) with different variogram types (namely Gaussian, Matérn
3/2 and 5/2, rational quadratic and exponential). The one with the best accordance is a
power function. But such variogram is possible only for non-stationary processes and it is not
implemented in the Python package used for the study. Therefore the Gaussian variogram
was also used for this input, in the absence of any better available. The situation was similar
for the other outputs, shown in figures 4.4 to 4.6.
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Figure 4.3 – Empirical variogram and Gaus-
sian variogram fitting for the output rV .

Figure 4.4 – Empirical variogram and Gaus-
sian variogram fitting for the output NG0.

Figure 4.5 – Empirical variogram and Gaus-
sian variogram fitting for the output rk.

Figure 4.6 – Empirical variogram and Gaus-
sian variogram fitting for the output Texe.
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4.4.3 Nugget effect and noisy observations

The so-called "nugget effect" is a discontinuity of the variogram in zero. All variograms
satisfy γ(0) = 0. Without nugget effect, they also satisfy lims→0 γ(s) = 0. One talks about
nugget effect when this limit is not zero. The consequence is that the the kriging estimator is
discontinuous on observation sites: as close as possible of the observation sites, it may give a
value different from observation. But the kriging estimator is still an exact interpolator: the
equation (4.29) is modified into:

Ŷx = (c(x) + σ2
01X(x))T (C(X) + σ2

0I)−1Y (4.35)

where 1X(x) = 1 if x ∈ X, 0 else; and I the m × m identity matrix. When x = x1 for
example, the terms (c(x1) + σ2

0δX(x1)) and (C(X) + σ2
0I)−1 cancel each other and the result

is Ŷx1 = f(x1).

To take into account some noise in the data, the nugget is added only on the observation
points: the equation (4.29) is modified into:

Ŷx = c(x)T (C(X) + σ2
0I)−1Y (4.36)

When x = x1 for example, the terms c(x1) and (C(X) + σ2
0I)−1 no longer cancel each other

and the result is Ŷx1 6= f(x1). This distinction is clearly stated in the DiceKriging package
documentation (Roustant et al. (2012), pages 7-8).

In the sklearn package, the documentation is not as specific but it appears that nugget
and observation noise are not distinguished and only observation noise is considered. For
example, in figure 4.7 is shown an example of 1-dimensional kriging with (right) and without
(left) observation noise. One can see that the estimation without observation noise equals
exactly the observed values while it is sometimes different when some observation noise is
added. The interpolator is not exact, thus it is truly an observation noise and not a nugget
effect.

Indeed the filtering method provides an estimation which may vary from one run to the
next because the sample size is finite. Thus an observation noise is relevant in our system.
To give a value for the noise level, the same run2 was repeated 1000 times and the standard
deviation of the output was taken as noise value.

2This run was with all parameters at their nominal value, given in the table 7.2, page 203.
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Figure 4.7 – Example of 1-dimensional kriging of the function x 7→ x sin(x) with a Matèrn
5/2 variogram. Blue dots are the observations, dotted black line is the target function, red
solid line is the kriging estimation, shaded area is the 95% confidence interval.
(a) without nugget effect. (b) with a noise value of 0.05.

4.4.4 Performances of the meta-models

The surrogate model was evaluated by cross-validation (see section 8.3.1 for an introduction
to cross-validation). The original sample was split randomly in a training part (80% of the
sample) and a testing part (20% of the sample). The training part is used to fit the meta-
model, then the fitted meta-model makes its prediction on the testing part. Like so, the
error of the meta-model can be estimated. To lessen the subjectivity of the random split,
the K-fold method is used with K = 5: the sample is split randomly in 5 equally-sized parts
and they are taken one after the other as the testing part. For each fold3, the determination
coefficient R2 is estimated:

R2 = 1−

Ntest∑
i=1

(yi − ŷi)2

Ntest∑
i=1

(yi − ȳ)2
(4.37)

where Ntest the size of the testing sample, yi the observed value given in the testing sample,
ŷi the estimation with the meta-model and ȳ = 1

Ntest

∑Ntest
i=1 yi the estimated average on the

testing sample.

The R2 score has for maximum value 1, that would be reached for a model making the
same prediction as the testing sample. For a model predicting the average value ŷ everytime,
the R2 score would be 0. However, the lowest bound for R2 is −∞ as the model can always
be made worse. In summary, the highest is R2, the better is the model.

The K-fold cross-validation was repeated for each output of the system (see chapter 5

3The K-fold method can be visualized like if one of the K parts of the sample (the testing part) is folded
against the others. This operation is repeated K times and can be called a fold (shortcut).
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for their definition). The table 4.2 gives the R2 averaged over the 5 folds. One can see that
the meta-models for b (wind spectrum slope) and Texe (execution time) are quite good. On
the other hand, the meta-models for NG0 (number of null potential), rk (TKE error) and rV
(wind error) are of lower quality. It means that the predictions of wind spectrum slope and
execution time are more trustworthy than the predictions of number of null potential, TKE
error and wind error. However, some graphics presented at the chapter 6 are independent
from meta-models (cobweb plots) and strengthen the given conclusion.

Output NG0 b rk rV Texe
Average R2 0.6418 0.8512 0.6204 0.6269 0.8574

Table 4.2 – Results of the evaluation of the meta-model by K-fold cross-validation (K = 5).

4.5 Conclusion

This chapter is an introduction to the variance-based sensitivity analysis carried out in this
thesis. Although it is not the only way to perform a sensitivity analysis, variance-based
techniques has the advantage to be general (finite variance apart, no assumption on the
computer code is made), with many numerical estimations available. The sensitivity indices
(so-called Sobol indices) are based on the decomposition of the output variance. First, the
decomposition is functional. The deterministic version is given as an introduction. For
the stochastic version, the output is seen as a random variable projected onto Hoeffding
spaces. Hoeffding spaces are orthogonal, which ensures the decomposition is unique. In
the end the variance of the output is written as a sum of terms which be attributed to a
single group of inputs. Such terms are the unnormalized version of the simple Sobol indices.
From simple Sobol indices, we define total Sobol indices (reckoning with all contributions of
the group members) and complete Sobol indices (reckoning with all contributions of lower
order). In this thesis, only first order simple Sobol indices, first order total Sobol indices and
second order simple Sobol indices are computed. The corresponding numerical estimators are
precised in the table 4.1. To by-pass the computing cost of running the model many times, a
Gaussian process meta-model is used. It is built by simple kriging with a Gaussian variogram.
All the calculus have been made with Python opensource packages: sklearn for Gaussian
process kriging, SALib for Sobol indices estimation. The results of the sensitivity analysis are
presented at the chapter 6.
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Applications and results

107





Chapter 5

Reconstruction of turbulent
medium
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5.1 Introduction

The purpose of turbulent medium reconstruction (shortened in reconstruction method) is to
filter fast measurements of wind in a turbulent fluid and provide estimates of turbulence as fast
as the observation. The application case is the measurement of the wind in the atmospheric
boundary layer with a multiple point remote sensor. The principle is to represent the fluid
by many fluid particles (which give also a Monte Carlo representation of the wind probability
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law), to propagate these particles with a stochastic Lagrangian model and to correct their
speed according to the observation with a filtering algorithm.

At the chapter 1, we have introduced the stochastic Lagrangian model used here. At the
chapter 2, we reviewed some parts of the filtering theory and explained the choice of the
algorithm. In chapter 3, we saw the principle of measurement of a Doppler lidar. Turbulent
medium reconstruction is at the crossroad of these domains, as summarized by figure 5.1. This
section aims to link the previous elements to build the reconstruction method algorithm.

Figure 5.1 – Situation of the reconstruction regarding to previous chapters.

5.1.1 Notations

For the sake of readability, the notations used along this chapter are introduced and illustrated
in this section.

In figure 5.2 is shown a visual representation of the framework. A lidar is staring vertically.
This lidar measures the wind along the laser beam (it measures only the vertical component of
the wind). The beam scans a probe volume. To get a vertical profile of vertical wind, the beam
is divided into segments (vertical levels) and pulses coming back from a single segment are
averaged to provide one wind measurement per vertical level and per time step. Measurements
are denoted V o(z, t). Such a vertical profile is the input of the reconstruction. Considering
the wind probability law does not change inside a vertical level, the probe volume is seeded
with particles. These particles are fluid particles, so that a Lagrangian model of turbulence
is used to guess their movement. Particles at the same vertical level are also samples of the
same wind probability law, thus Bayesian filtering algorithm for Monte Carlo methods is used
to perform the filtering.
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Figure 5.2 – Geometry of the 1D turbulence reconstruction problem and vocabulary.

Particles are represented numerically by position-speed (X,V ) couples indexed by a time
step t and a particle number i. They are initialized randomly (∀i, Xi

0  U(Xmin, Xmax), V i
0  

N (V o(z(i), 0), σV )) but after few time steps, they get some information from the following
observations V o(z, 1), V o(z, 2), .... Within one time step, the four steps (mutation, condi-
tioning, selection, estimation) are done sequentially. Figure 5.3 clarifies how the state vector
is denoted between these steps.

Figure 5.3 – Evolution of particle state vector within a time step.

Here is a short list of some of the notations used in the text.

• Nz : number of vertical levels (Nz = 14 in these experiments)

• Nt : number of time steps (Nt = 1850 for a dataset around 2 hours long)

• N : total number of particles (N = 1400 by default)

• i ∈ [[1, N ]] : particle number.

• t ∈ [[1, Nt]] : time step number.

• z ∈ [[1, Nz]] : vertical level number.

111



• z(i) =
⌊
Xi−Xmin

∆z

⌋
+ 1 : vertical level number of particle i.

• ∆z : width of a vertical level, portion of beam integrated to get a single measurement
(∆z = 50m for this lidar).

• Xmin : Lowest altitude measured by the lidar (limited by the time of emission: Xmin =
100m).

• Xmax : Highest altitude measured by the lidar (voluntary limited to 850m because of
to many missing data above). Xmax = Xmin + (Nz + 1)∆z

• B(z) = [Xmin + (z − 1)∆z,Xmin + z∆z[ : Vertical level number z.

• B(z, t) = {i, Xi
t ∈ B(z)} : set of particles at level z after mutation.

• B̃(z, t) = {i, X̃i
t ∈ B(z)} : set of particles at level z after conditioning.

• B̂(z, t) = {i, X̂i
t ∈ B(z)} : set of particles at level z after selection.

5.1.2 Objectives

The reconstruction provides an estimation of the wind V e(z, t) (e for estimation). This
estimation involve two other signals: V r(z, t) (r for reference) and V o(z, t) (o for observation),
which are realisations of the respective stochastic process V r

z,t and V o
z,t. The distinctions

between deterministic and stochastic signal is made in figure 5.4 in addition to their qualitative
relationship.

Figure 5.4 – "Who’s who?" among stochastic processes.
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The real wind V r
z,t is a stochastic process solution of the Navier-Stokes equation in their

stochastic form. Such stochastic process is unreachable since there is no analytical solution
of Navier-Stokes equations. In the atmosphere, a single realisation of it is going on. This
realisation is denoted V r(z, t) and it will the signal measured by the instrument.

But the instrument is not perfect and doing a measure introduces an error. Hence, the
measurement (or the observation) is described with a stochastic process V o

z,t

V o
z,t = V r(z, t) + εoz,t (5.1)

where εoz,t is the measurement error. To perform the filtering, it is assumed stationary centred
and Gaussian. From the stochastic process V o

z,t, the instrument records only one realization:
V o(z, t). This is where starts the filtering algorithm. V o(z, t) is the input of the reconstruction
method.

In output of the reconstruction, we have the signal V e(z, t) which is expected to be a
better approximation of the wind than V o(z, t). The computation of V e(z, t) from V o(z, t)
involve the Lagrangian particles pictured in figure 5.2. Such particles require a Lagrangian
approach and are led by a stochastoc Lagrangian model. Thus, the last layer of stochasticity
in figure 5.4 is due to the particles.

What exactly is V e(z, t) ? In the Eulerian approach, the wind field is the stochastic
process V r

z,t. In the Lagrangian approach, the wind field is the couple of stochastic processes
(Xt, Vt). Because Eulerian and Lagrangian approaches are consistent we have:

Vt = V r
Xt,t (5.2)

Raw, the particles can get away from the lidar, and they are not linked to the observation.
The different steps in figure 5.3 solve each of these issues.

• Mutation: make the particles behave according to fluid mechanics.
L(Vt, Xt) is such that Vt = V r

Xt,t
.

• Conditioning: keep the particles equally spread in the probe volume.
L(Ṽt, X̃t) = L(Vt|Xt ∈ B(z)).

• Selection: use the observation to discard non-representative particles.
L(V̂t, X̂t) = L(Vt|Xt ∈ B(z), V o

z,t = V o(z, t)).

The estimation step, at last, computes the outputs and updates the quantities needed at the
next time step. The wind estimation is performed on the particles out of the selection step:

V e(z, t) = E
[
Vt|Xt ∈ B(z), V o

z,t = V o(z, t)
]
' E

[
V r
z,t|V o

z,t = V o(z, t)
]

(5.3)

The estimated wind V e(z, t) is thus the average of all possible realizations of V r
z,t which can
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lead to the the observation V o(z, t). In that sense, V e(z, t) is a better estimation of wind
than the single realization V o(z, t).

In figure 5.5, the stochastic processes V r
t and V o

t (the z is omitted for simplicity) are
represented by their average (thick line in the middle of the blur area) and their variance
(span of the blur area). On the top panel, the variance of the wind increases during the day
because of turbulence and weakens during the night. This change is also visible on realizations
(black lines). One of these realization is the one measured. On the bottom panel, the true
realization is displayed and the blur area now represents the measurement error.
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Figure 5.5 – Illustration of stochastic processes V r
t (r for "reference" or "real") and V o

t (o for
"observation").
In the top panel, the real wind stochastic process is shown. Its average E [V r

t ] is in green.
The realisation that happened is in thick black. Centred around E [V r

t ], the blur area depicts
the most likely values for V r

t . The TKE is half the variance of that process.
In the bottom panel, the observation stochastic process is displayed. Its average is in black
(equal to the realisation of V r

t that happened). Centred around E [V r
t ], the blur area depicts

the most likely values for V o
t .
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5.2 From theory to algorithm

5.2.1 Mutation

The mutation step is the one pushing the system from time t to time t+dt. Fluid is discretized
with particles, and time evolution is hashed into time steps. The illustration of this step on
the particle system is shown figure 5.6.

Figure 5.6 – Illustration of the mutation step on a 1D population of particles. Each particle
is moved with DSLM, the initial distribution η̂t−1 is modified into ηt.

Initially, the stochastic Lagrangian model describes the evolution of the coupled stochastic
process (Xt, Vt) (equation 1.26), recalled here:{

dXt = Vtdt

dVt = −Atdt− C1
εt
kt

(Vt − 〈Vt〉) dt+
√
C0εtdBt

(5.4)

Then, the stochastic process (Xt, Vt) is approached by a Monte-Carlo method.

Xt
MonteCarlo−→ (X1

t , X
2
t , ..., X

N
t )

Vt
MonteCarlo−→ (V 1

t , V
2
t , ..., V

N
t )

The continuous time stochastic Lagragian model is given by equation (1.27). The continuous
time evolution is approached by a discrete time evolution with an explicit Euler scheme.
The so-called discrete stochastic Lagrangian model (DSLM) is given by equation (1.28) and
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recalled here. Xi
t+1 = Xi

t + V i
t ∆t+ σX

√
∆tζXt

V i
t+1 = V i

t −Ait∆t− C1
ε
z(i)
t

kit

(
V i
t −

〈
V i
t

〉`)∆t+
√
C0ε

z(i)
t ζV t

(5.5)

This explicit Euler scheme introduces error that Baehr chose to take into account by
introducing a new term σX (see in Baehr (2010), system 4.4, denoted σXn ). It is known that
stochastic differential equations as 5.4 are condensed notations hiding the Ito integral. For
the position equation,

dXt = Vtdt ⇐⇒ Xt −X0 =
∫ t

0
Vsds

The Euler scheme is written as follows.

Xt+∆t −Xt =
∫ t+∆t

t
Vsds =⇒ Xt+∆t = Xt +

∫ t+∆t

t
Vsds− Vt∆t︸ ︷︷ ︸

σX
√

∆tζX

+ Vt∆t

The error made through this discretisation is assumed to be Gaussian, centred, of standard
deviation σX : ∫ t+∆t

t
Vsds− Vt∆t = σX

√
∆tζXt (5.6)

with ζXt a centred and reduced normal random variable. The additional parameter σX in-
troduced here is usually set to 0 (Bernardin et al., 2010; Rousseau et al., 2007; Suzat et al.,
2011). By default, it is set to 10 meters. But the influence of this value will be assessed in
the sensitivity analysis.

Terms are briefly described in table 5.1. The following list gives more details:

• C0 : Kolmogorov’s constant.
Appear in the structure function of Monin and Yaglom (1963) used to identify the
Lagrangian time in the Langevin equation (see chapter 1)

• C1 : Fluctuation constant.
Appear in the stochastic Lagrangian model. After the identification of the term in the
Langevin equation, it is given as C1 = 3

4C0. Pope (1994) modifies it into C1 = 1
2 + 3

4C0.
For this work, we choose to consider it as an independent constant.

• σX : Error of discretisation (standard deviation).
Term usually set to 0, but taken into account by Baehr (2010) in the form of equation
5.6.

• ∆t : Width of the time step (' 4s).
Time between two successive measurements of lidar for all vertical levels.

• ζXt , ζVt : independent identically distributed as N (0, 1) random variables.

117



Discrete stochastic Lagrangian model (DSLM) Xi
t+1 = Xi

t + V i
t ∆t+ σX

√
∆tζX

V i
t+1 = V i

t −A
z(i)
t ∆t− C1

ε
z(i)
t

kit

(
V i
t −

〈
V i
t

〉`)∆t+
√
C0ε

z(i)
t ζV

C
oo

rd
. i Particle number

t Time step number
z(i) Vertical level at which is particle i

C
on

st
an

ts

C0 Kolmogorov’s constant
C1 Fluctuation constant
σX Error of discretisation (standard deviation)
∆t Width of the time step (' 4s)

ζX , ζV Random variable iid as N (0, 1)

Fi
el
ds

Xi
t Position of the particle i at time step t

V i
t Speed of the particle i at time step t〈

V i
t

〉` Local average of wind around particle i at time step t.
kit LSTKE at time step t and particle i
A
z(i)
t Large scale variation at vertical level z(i) and time step t
ε
z(i)
t Eddy-dissipation rate at vertical level z(i) and time step t

Table 5.1 – Equation and nomenclature of discrete stochastic Lagrangian model used in the
mutation step.

• Xi
t : position of the particle i at time step t.

As we are in 1D, the position is only the altitude.

• V i
t : speed of the particle i at time step t.

As we are in 1D, the speed is only the vertical component of the wind.

•
〈
V i
t

〉` : local average of wind around particle i at time step t.
The local average is a Gaussian-weighted average with standard deviation ` (see figure
1.5 and the corresponding section). The parameter ` is thus the locality parameter
through which particles are interacting.

• kit : LSTKE at time step t and particle i.
Introduced in Pope’s model as Eulerian variance (see section 1.4). The Eulerian variance
is computed with Lagrangian particles thanks to a regularisation kernel (Gaussian local
average) seen at the section 1.4.

• Ait : large scale effect on the wind at vertical level z(i) and time step t.
Account for the large scale forces acting on the particles. Set to a consistent value
described at section 1.3.3.2.

• εit : Eddy-dissipation rate at vertical level z(i) and time step t.
Rate of energy transfer from larger scales to smaller scales. Set to a consistent value
described at section 1.3.3.3.
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As one can see, the DSLM needs several input parameters: C0, C1, σX . The main work
done by the mutation step is to push forward all the prognostic fields. Thus it can be seen
as the diagram 5.7.

Figure 5.7 – Diagram of input/outputs and parameters for the mutation step.

5.2.2 Particle management (conditioning)

In the filtering theory (chapter 2), the filtering method has two steps: mutation and selection.
When it comes to the application to moving systems (such as Lagrangian fluids), an additional
step is required. Indeed, particles fluids are moving with the wind while the observing sensor
is fixed. A fluid particle right in the beam at 9am can be really far away at 10am. The
observation is representative of a fixed sample volume and the fluid particles do not stay into
it. To handle this problem, only particles inside the probe volume are considered. It implies to
give up particles which went out and to pick new particles inside (to keep a constant amount
of particles). This step is called particle management or conditioning. It is illustrated by the
figure 5.8.

Figure 5.8 – Illustration of the conditioning step on 1D examples.
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Acquisition processes, as defined in Baehr (2010) (definitions 1.1 and 1.2) are the good
framework to handle this. The fluid particles of the reconstruction system are acquisition
processes. With the vocabulary of Baehr, the acquisition path Xt is the trajectory of a
particle Xi

t , the acquisition field X ′t,x is the wind and the acquisition process X ′t,Xt is the
particle speed V i

t . The observations of lidar are also an acquisition process with a stationary
acquisition path.

There are two consequences of using acquisition processes:

• Eulerian wind is estimated from Lagrangian particles with the use a local average of
parameter ` (Gaussian regularisation kernel in Baehr (2010), equation 1.3).

• The domain of evolution is restricted to ensure compatibility among the acquisition pro-
cess particles and the acquisition process instrument ("modified Markov kernel" M̃n+1,πn
in Baehr (2010), p.928).

The first consequence has been mentioned already in the section 1.3.3. The second conse-
quence is this particle management step.

The problem is to ensure the particles correctly represent the probe volume. As particles
are fluid particles, we expect the repartition of particles to be in agreement with physical
insights (e.g. ρ(z) = ρ0e

−zg/RT0 in an isotherm atmosphere). Hence, the new particles will be
distributed according to a target Eulerian density. Our first approach is to consider ρ(z) = ρ0
as target Eulerian density (one wants particles equally spread on all the probe volume).

The free repartition of particles resulting from mutation has two cases that are patholog-
ical:

• particles out of the probe volume

• part of the probe volume rid of particles

Many answers are possible. The first answer was provided by Baehr for the case of a single
anemometer Baehr (2008). But when the probe volume is measured in different points (as it
is the case with lidar), things get more complicated because one must allow particles to move
among the measurement points. Hence, the procedure proposed by Rottner (2015) is much
more complex than for single anemometer, but gives a first solution for lidar. We will focus
only on the solution actually implemented here, slightly different from Rottner’s one.

The algorithm A.1 will be used intensively. As reminder, the algorithm A.1 provides
realizations of any random variable described by a potential G (G can be any real positive
integrable function, stored numerically as an array of positive number). The notation

X  G

means "X is a G-distributed sample generated with algorithm A.1". All the details of the
algorithm are given page 267. We also recall that the notation X  U(E) means "X is a
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uniform-distributed sample of elements of E".

The particle management step is divided in two distinct algorithms: one to replace par-
ticles out the probe volume 5.1, and one to redistribute the particles in the probe volume
5.2.

5.2.2.1 Particles out of the probe volume

The algorithm 5.1 describe how particles which are out of the probe volume after the mutation
step are forgotten in favour of new ones. First, particles out are detected (Iout denotes the set
of particles out of the domain). Particles numbers i ∈ Iout of these particles will be reallocated
to new particles in the probe volume. Particles out are reallocated in order to equilibrate
particle population among vertical levels. For each particle out, we first choose a vertical
level of arrival zarr randomly, according to a potential. The potential used (denoted Gout) is
chosen in a way which brings closer to the target density.

Gout : [[1, Nz]] → [0,+∞[
z 7→ Gout(z) = N − |B(z, t)| (5.7)

with B(z, t) = {i, Xi
t ∈ B(z)} (Bz(t) is the set of particles at level z at time t) and |B(z, t)|

its cardinal.

This potential is high for vertical levels with few particles. The higher is its potential, the
more likely this vertical level will be picked up. Hence, the vertical level zarr chosen according
to Gout is probably poor in particles. Once the arrival vertical level zarr is found, the particle
out is assigned to this level: its position is updated. The speed of the reallocated particle
is updated differently whether the arrival level is empty or not. If there are particles at the
arrival level after the mutation step, one of them iarr is chosen randomly (uniformly) and
the reallocated particle takes its speed with a slight modification (Ṽ i

t = V iarr
t + σV ζt). If the

arrival level is empty (B(zarr, t) = ∅), there is no particle to copy, then the speed of reallo-
cated particle is set to the observation with a slight modification (Ṽ i

t = V o(zarr, t) + σV ζt).
The slight modification σV ζt (with ζt  N (0, 1)) is added to avoid wads of particles with the
same speed. Wads of particles with the exact same speed are a problem because they increase
the chance of null potential in the selection step (see following section).

5.2.2.2 Redistribution of particles

Once all the particles are inside the domain, the redistribution of the particles is done. This
step ensures that there are enough particles at each level to perform relevant statistics. Baehr
sees it has a redistribution to reach a target density profile ρ(z) ∝ |B̃(z, t)|/N . In this
framework, our target would be a constant density : ρ(z) = ρ0. But the presented algorithm
(5.2) also keeps place for the density profile (z 7→ |B̃(z, t)|) to evolve freely. It only ensures
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Algorithm 5.1 Replace particles out the probe volume
Input: (Xi

t , V
i
t )i∈[[1,N ]], V o(z, t)z∈[[1,Nz ]]

Output: (X̃i
t , Ṽ

i
t )i∈[[1,N ]]

Iout = {i, Xi
t /∈ [Xmin, Xmax[}

for i ∈ Iout do
Gout(z) = N − |B(z, t)|
zarr  Gout
X̃i
t  U(B(zarr))

if B(zarr, t) = ∅ then
ζ  N (0, 1)
Ṽ i
t = V o(zarr, t) + σV ζ

else
iarr  U(B(zarr, t))
ζ  N (0, 1)
Ṽ i
t = V iarr

t + σV ζ
end if

end for
return (X̃i

t , Ṽ
i
t )i∈[[1,N ]]

that a minimum amount of Nmin particles is present at each level. Inequalities are not treated
as long as |B̃(z, t)| > Nmin.

The algorithm 5.2 comes right after the algorithm 5.1. It is the second task of the con-
ditioning step on figure 5.3. For each vertical level zarr, its population |B̃(zarr, t)| is checked
and increase if necessary. If |B̃(zarr, t)| > Nmin, the computer does not enter the while loop:
nothing is done for this level, the next level is tested. If |B̃(zarr, t)| < Nmin, then particles
will be added to this level until there are at least Nmin particles. The threshold Nmin is
arbitrarily set to 80% of the average population (Nmin = 0.8N/Nz), which leaves a 20% span
of freedom for the density profile to evolve with the flow. Particles to refill the vertical level
zarr in need are taken from another vertical level zdep. The departure vertical level zdep is
chosen randomly, according to the potential Gred.

Gred : [[1, Nz]] → [0,+∞[
z 7→ Gdep(z) = max(|B̃(z, t)| −Nmin, 0) (5.8)

The potential Gred has the inverse trend than Gout (equation 5.7): level loaded with particles
have high Gred (and low Gout), as it can be visualized on figure 5.9. Hence, the chosen vertical
level zdep has a population probably high. In addition, Gred has been constructed to ensure
that underloaded levels (with |B̃(z, t)| < Nmin) cannot be chosen. Indeed, such levels have
Gred(z) = 0 and levels with potential 0 cannot be chosen (as explained in section A.2.3).
In the end, only overloaded levels can be chosen, with a probability proportional to their
population. Once the departure level zdep is chosen, a particle idep is chosen uniformly inside.
The particle idep is assigned to the underloaded level: its position is updated. The speed
of the reallocated particle is updated differently whether the arrival level is empty or not.
If there are particles at the arrival level after the mutation step, one of them iarr is chosen
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randomly (uniformly) and the reallocated particle takes its speed with a slight modification
(Ṽ idep
t = Ṽ iarr

t + σV ζt). If the arrival level is empty (B̃(zarr, t) = ∅), there is no particle to
copy, then the speed of reallocated particle is set to the observation with a slight modifica-
tion (Ṽ idep

t = V o(zarr, t) + σV ζt). As for reallocation of particles out, the slight modification
σV ζt (with ζt  N (0, 1)) is added to avoid problematic wads of particles with the same speed.

Figure 5.9 – For each vertical level (vertical dashed line), the potential for particles out Gout
(resp. redistribution Gred) are proportional to the segment in the dotted (resp. wavy) area.

In the end, the conditioning step is a two tasks step to ensure particles are correctly spread
in the probe volume. The first task is to reallocate particles out of the probe volume. The
second task is to ensure a minimum amount of particles is present at each level. These two
tasks are respectively detailed in algorithms 5.1 and 5.2. In these algorithms, it can be found
several parameters: N , σV . This step push the particle from their state "after mutation"
(Xi

t , V
i
t )i∈[[1,N ]] to their state after conditioning (X̃i

t , Ṽ
i
t )i∈[[1,N ]]. Hence, the resulting diagram

of this step would the figure 5.10.

Figure 5.10 – Diagram of input/outputs and parameters for the conditioning step.
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Algorithm 5.2 Redistribute particles inside the probe volume
Input: (X̃i

t , Ṽ
i
t )i∈[[1,N ]], V o(z, t)z∈[[1,Nz ]]

Output: (X̃i
t , Ṽ

i
t )i∈[[1,N ]]

Nmin = 0.8 N
Nz

Refresh B̃(z, t) for all z.
for zarr = 1 : Nz do
Refresh B̃(zarr, t).
while |B̃(zarr, t)| < Nmin do
Gred = max(|B̃(z, t)| −Nmin, 0)
zdep  Gred
idep  U(B̃(zdep, t))
X̃
idep
t  U(B(zarr))

if B(zarr, t) = ∅ then
ζ  N (0, 1)
Ṽ
idep
t = V o(zarr, t) + σV ζ

else
iarr  U(B(zarr, t))
ζ  N (0, 1)
Ṽ
idep
t = Ṽ iarr

t + σV ζ
end if

end while
end for
return (X̃i

t , Ṽ
i
t )i∈[[1,N ]]
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5.2.3 Selection

The selection step is the core of the filtering method. As seen in the filtering theory (chapter 2),
the prior information is brought by the Lagrangian model (mutation step) but this information
is incorporated into the cloud of particles through the use of Bayes’ theorem: this is the
selection step. The swarm of particles coming from mutation and conditioning brings one
information: what would be the wind distribution ∆t seconds after the last observation? ∆t
seconds later, a new (noisy) observation is available: this is another source of information. The
selection step modifies the cloud of particles to fit the best with both sources of information.
It is called selection because the modification is done by selecting good particles (that will
stay the same) and getting rid of bad particles (that will be reallocated). This is illustrated
on figure 5.11.

Figure 5.11 – Illustration of the selection step on a 1D population of particles. Particles are
rejected and resampled according to their likelihood, the initial distribution η̃t is modified
into η̂t. One can see that the histogram have grown where the observation is and is flatter
elsewhere.

The distinction between good and bad is made by using the likelihood of particles with
respect to the new observation. As in conditioning, the reallocation of particles is made using
the algorithm A.1 to get G-distributed sample. For the selection, the potential G is the
likelihood of particles with respect to the new observation (denoted Gobs). To compute this
likelihood, the probability law of the measurement error must be known. It is common to
assume Doppler lidar have Gaussian error (Frehlich and Yadlowsky, 1994). Hence, we assume
the error of measurement is Gaussian with a standard deviation σobs (input parameter set to
"reasonable" value). It yields to the potential Gobs, defined for each vertical level by equation
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5.9.

Gobs :

B̃(z, t) → [0,+∞[

i 7→ Gobs(i) = exp

−
(
Ṽ i
t − V o(z, t)

)2

2(σobs)2

 (5.9)

Three comments are to be made on the expression of Gobs (5.9). First, even if the obser-
vation is known to be very noisy, particles with the exact same speed as measured will have
a potential 1. They are sure to be conserved. It is the consequence of the assumption the ob-
servation is unbiased. Otherwise, it would be required to have a guess of the bias and remove
it from the measured value. Second, the decrease of the potential as Ṽ i

t is getting away from
V o(z, t) is scaled by σobs. If σobs is large (which means the observation is very noisy), the
potential will decrease slowly and even particles with a very different speed than measured
can be conserved. If σobs is small (which means the observation is very trustworthy), the
potential will decrease sharply and only particles with a speed very close to the measurement
are conserved. The parameter σobs is thus of prime importance. Its influence will be studied
in the sensitivity analysis (see chapter 6). Third, the value of potential Gobs is only relative:
the potential of a single particle makes no sense. It makes sense only in comparison with
other particles.

We have seen in the section 2.3.3 that different ways exist to perform the selection step.
The chosen selection kernel implies to make a acceptance-rejection step before resampling ac-
cording to the likelihood. The acceptance-rejection is also made with the likelihood. Hence,
the potential Gobs is used for two purposes during the selection step: first for acceptance-
rejection of particles, second for the resampling of the rejected particles Irej . Accepted par-
ticles are kept unchanged. Rejected particles are resampled with an SIR algorithm. Only
speed is used to select the particles (through the definition of Gobs) but speed and position
are modified in the resampling. The complete algorithm of the selection step is given next
(algorithm 5.3). Diagram with inputs, outputs and parameters is given figure 5.12.

Figure 5.12 – Diagram of input/outputs and parameters for the selection step.
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Algorithm 5.3 Selection of particles according to their likelihood.
Input: (X̃i

t , Ṽ
i
t )i∈[[1,N ]], V o(z, t)z∈[[1,Nz ]]

Output: (X̂i
t , V̂

i
t )i∈[[1,N ]]

Refresh B̃(z, t) for all z.
(X̂i

t , V̂
i
t )i∈[[1,N ]] = (X̃i

t , Ṽ
i
t )i∈[[1,N ]]

for z = 1 : Nz do
Gobs(i) = exp

(
− (Ṽ it −V o(z,t))2

2(σobs)2

)
, ∀i ∈ B̃z(t) # Likelihood

u U([0, 1])
Irej = {i ∈ B̃(z, t), Gobs(i)/max(Gobs) < u}
for irej ∈ Irej do
inew  Gobs
(X̂irej

t , V̂
irej
t ) = (X̃inew

t , Ṽ inew
t )

end for
end for
return (X̂i

t , V̂
i
t )i∈[[1,N ]]

5.2.4 Estimation

The cloud of particles in output of the selection step is the best guess we have of the wind
probability law. It is the population on which the estimation must be performed. Hence,
output of the reconstruction are computed at this step. The main output is the estimation
of wind V e(z, t) (equation 5.10) at each vertical level. It can thus be written with the spatial
average 〈·〉 introduced in the definition 1.7:

V e(z, t) =
〈
V̂t
〉

= 1
|B̂(z, t)|

∑
i∈B̂(z,t)

V̂ i
t (5.10)

The estimated wind V e(z, t) differs from the observed wind V o(z, t) because most of the
noise in the t 7→ V o(z, t) signal has been removed. It is visible on the time series (see figure
5.15) and even clearer on the PSD (see figure 5.16). Hence V e(z, t) is a much more accurate
guess of the wind in turbulent conditions. Rottner’s later works show the improvement of
using V e(z, t) instead of V o(z, t) in turbulence monitoring for wind energy. In Rottner and
Baehr (2014) and in Rottner (2015) (figure 4.21, page 90), it is shown that using the filtered
wind to estimate the turbulent intensity1 is better than using the observed wind directly
(Gryning et al. (2017), figure 2.5).

Beside filtered wind, the reconstruction provides turbulent kinetic energy estimation. We
have seen in the chapter 1 several TKE estimators. In order to compare them, they can be
computed all together. In the previous works of Baehr (2008) and Rottner (2015), only the
LSTKE was computed. In compliance with these work, the LSTKE is the estimator used
in the stochastic Lagrangian model. LSTKE is defined in the chapter 1, definition 1.10, we

1Turbulent intensity (TI) is the quantity in use in wind power industry to assess the loss of power due to
turbulence. It is the ratio between wind standard deviation and mean wind TI =

√
u′2/ū
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recall it here (superscript e is for estimation):

ke(z, t) = kLS(z, t) = 1
2

〈〈(
V̂ i
t −

〈
V̂ i
t

〉`)2
〉`〉

(5.11)

This step is also the opportunity to update all the quantities required in the Lagrangian
model because the particles have been selected. From the chapter 1, section 1.3.3, we have
the following estimates: 〈

V i
t

〉`
=
∑N
j=1 V

j
t Φ`(Xi

t , X
j
t )∑N

j=1 Φ`(Xi
t , X

j
t )

Ait = − 1
∆t

∑
j∈B̂(z(i),t)

(V̂ j − V̂ j
t−1)

|B̂(z(i), t)|

εit = − 1
C0∆t

∑
j∈B̂(z(i),t)

(V̂ j
t − V̂

j
t−1)2

|B̂(z(i), t)|

with Φ` the Gaussian regularization kernel displayed in figure 1.5 and 〈·〉` the corresponding
average operator. Because of the many calculations carried out at this step, it is often the
heaviest step in terms of computing time, as shown in the figure 5.22. The diagram for this
step would be 5.13. Note that it does not update the state vector, it just provides the outputs
and updates quantities needed in the mutation step.

Figure 5.13 – Diagram of input/outputs and parameters for the estimation step.

5.2.5 Summary

The four main steps of the reconstruction algorithm have been described in this section. They
are repeated as long as there are observation available. The resulting diagram is in figure
5.14.
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Figure 5.14 – Organisation of the four main steps of the reconstruction algorithm in cycle.

5.3 Hints for practitioners

Initially, the code of the reconstruction algorithm was in Scilab. In order to run the code many
times, as required for sensitivity analysis, it has been translated to Fortran 90. At the occasion
of the translation, a special care has been taken to improve the algorithm efficiency (reduction
of loops, use of optimized libraries such as BLAS-LAPACK, a start of parallelisation). As a
result, the computing time was improved of a factor 150: for comparable settings (N = 1400),
the Scilab code was processing 2h of data in 3h, the Fortran code processes 2h of data in 70
seconds. The restriction of the Fortran code to the 1-dimensional case must temper this
result. The software engineering work, although massive, will not be presented here. Instead
of a cumbersome description of the unitary and integration tests carried out, we present a
summary of the experiment ensuing from such work. First, a list of usual graphic outputs is
given. Then, a list of checkpoints to ensure the code is doing what it is supposed to. Finally,
few words about the known limitations of the algorithm.

5.3.1 Usual outputs

Turbulence medium reconstruction is a complex system in which many things are worth
looking at. This paragraph intents to give an idea of the most used outputs. Here is the list
of the presented figures:
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• Times series of wind (5.15).

• PSDs of wind (5.16).

• Scatter-plot of wind (5.17).

• Times series of TKE (several estimators of TKE available) (5.18).

• Scatter-plot of TKE (5.19).

• Amount of particles out, redistributed and rejected (5.20).

• Histogram of maximum potential (5.21).

• The pie chart of time spent inside each step (5.22).

All of them are commented in their caption. To build the system used for the sensitivity anal-
ysis, some of these figures have been reduced to a score. For example, the visual comparison
of the time series of wind is reduced to the estimation of the root-mean-squared error. The
outputs presented here are relevant for a single run of the reconstruction, that we want to
analyse carefully. The scores are presented in the next section.

Figure 5.15 – Time series of wind. Reference (black), simulated observation (cyan) and
estimated wind (red) are displayed. In this figure one can check is the estimated signal
matches better the reference than the observation.
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Figure 5.16 – PSDs of reference (black), simulated observation (cyan) and estimated (red)
wind are diplayed. One can check the observation has a horizontal spectrum at high frequency,
signature of white noise in the signal, while the reference and the estimation have almost the
same spectrum, close to the -5/3 target slope.
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Figure 5.17 – Scatter-plot of estimated wind against reference wind. Points are all near the
1:1 line, which indicate they match pretty well.

Figure 5.18 – Times series of TKE (several estimators of TKE available).
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Figure 5.19 – Scatter-plot of LSTKE against TTKE. One can see the LSTKE is fairly under-
estimated compared to TTKE (about 6.44 times). See chapter 1, page 32, for interpretation.
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Figure 5.20 – Amount of particles out (blue), redistributed (green) and rejected (red). One
can see there are very few particles affected by the conditioning (out or redistributed) while
the number of rejected is significant. Too many rejected particles (>90%) might be the
symptom of a degeneracy. Conversely, too few rejected (<20%) particles might the symptom
of a bypass of the selection.
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Figure 5.21 – Example of histogram of maximum potential. This histogram has been shown
to have a shape which can help to diagnose degeneracy of the filter.
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Figure 5.22 – The pie chart of time spent inside each step. The total time for one run of the 2
hours dataset is about 70 seconds. Most of this time is spent at the estimation step because
of the large amount of bulk calculations. Other steps have been greatly optimized during the
recoding in Fortran 90.
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5.3.2 Criteria of good behaviour

A large part of time was dedicated to the writing of the code in Fortran. From this engineering
work, we capitalized a good experiment of the reconstruction code, especially when it doesn’t
work. To sum things up, the table 5.2 gathers the main checkpoints a developer should look
at in case of problem.

Point to check Criterion Justification
1 Order of magnitude of wind about ±1 m·s−1 Same as lidar measurement

2 Order of magnitude of TKE about 0.9 m2·s−2 daytime,
0.2 nighttime.

For instance Darbieu et al.
(2015) (figure 9)

3 Order of magnitude of EDR de 10−5 à 0.2 m2·s−3
Smalikho et al. (2005), Chan
(2011) (figure 7) et Cohn
(1995) (figures 3, 5 et 7)

4 Slope of sind spectrum Close to -5/3
Kolmogorov’s spectrum

Kolmogorov (1941); Frisch
(1995)

5 Shape of wind time series see figure 5.23 Same as lidar measurement

6 Shape of TKE time series see figure 5.25
From Rottner (2015) (figure
4.17c), not found elsewhere

at such frequency.

7 Shape of EDR time series see figure 5.26

From Rottner (2015) (figure
4.18c), similar to Meneveau
and Sreenivasan (1987)

(figure 1)

8 Shape of maximum weight
histogram see figure 5.24 Bengtsson et al. (2008)

9 RMSE value < RMSE observation alone Filtering is supposed to
reduce error

10 Amount of rejected particles about 30% Experience...

12 Order of magnitude of terms
in mutation ±0.5m·s−1 Experience...

13 Order of magnitude of terms
in fluctuation ±1 Experience...

Table 5.2 – List of criteria to check the program is well written (sorted by importance)

5.3.3 Known limitations

The reconstruction has been designed with a stochastic Lagrangian model based on Kol-
mogorov’s hypothesis. But Kolmogorov’s hypothesis hold for high Reynolds number. At
night, or in stable conditions, the wind and the turbulence weaken. The stochastic La-
grangian model is not designed for such conditions. As a consequence, the filtering is not
performing really well in stable conditions. It has been pointed out by Rottner et al. (2016)
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Figure 5.23 – Typical shape of a wind time
series.

Figure 5.24 – Shape of maximum weight
histogram.

Figure 5.25 – Typical shape of a TKE time
series (vertical component, from Rottner
(2015)).

Figure 5.26 – Typical shape of a EDR time
series (vertical component, from Rottner
(2015)).

and in Rottner and Baehr (2017). This limitation is known but has not been a barrier for
the sensitivity analysis carried out in this work.
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5.4 Validation experiment and resulting scores

5.4.1 The validation framework

In order to test the filtering process, it is embraced into a larger framework. The reconstruc-
tion takes in input the measurements V o(z, t) and gives in output a set of particles describing
the PDF of the wind. Such particles are used for the estimation of the real wind (with less
measurement error) V e(z, t) and fast estimation of TKE ke(z, t). Hence, the reconstruction
itself can be seen as a function R (equation 5.12 and figure 5.27)

R : L2(R)× Rp −→ L2(R)× L2(R)
V o, θR 7−→ V e, ke (5.12)

with
V o, V e, ke : R× R+ −→ R

z, t 7−→ V o(z, t), V e(z, t), ke(z, t)

and

θR =



C0
C1
`

N

σobs

σV

σX


(5.13)

Figure 5.27 – Inputs and outputs of turbulence reconstruction.

The problem to assess the filtering process is that the estimation V e(z, t) is supposed to
approach V r(z, t), not V o(z, t). Hence, the embracing framework have to provide a reference
V r(z, t) to which the estimation can be compared. The reference V r(z, t) is chosen: it is high
quality lidar measurement (no noise visible on spectra). From that reference, the observation
is simulated. This framework allows to control the observation noise. The filtering method
(turbulent medium reconstruction) is applied to the simulated observation. Next, outputs of
the reconstruction are compared to the reference. Hence, validation scores can be computed.
The global framework is summarized in figure 5.28. Since new parameters appear in this
construction (for example, the observation noise is now under control, its variance is σadd),
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the vector of input parameters is completed.

θ =



C0
C1
`

N

σadd

σobs

σV

σX

τ


(5.14)

Figure 5.28 – Diagram of the validation experiment allowing to define the output scores.

To quantitatively assess the efficiency of the reconstruction, several validation scores are
estimated. Next section intents to introduce them.

5.4.2 Five validation scores

The scores we have been looking at to test the reconstruction system are the following: error
(RMSE) on the wind, error (RMSE) on the TKE, number of null potential, wind spectrum
slope and execution time. Each of them is now described with more details.
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5.4.2.1 RMSE on wind

As we have seen in the section 5.3.1, many information can be provided from the system. But
the common root of all these information is the set of particles after selection.

V(θ, ω, t) =


X̂1(θ, ω, t), V̂ 1(θ, ω, t)

...
X̂N (θ, ω, t), V̂ N (θ, ω, t)

 (5.15)

The estimation of the wind, V e(θ, z, t), depends on the set of parameters in input θ.

V e(θ, z, t) =
∑N
i=1 V̂

i(θ, ω, t)1X̂i(θ,ω,t)∈B(z)∑N
i=1 1X̂i(θ,ω,t)∈B(z)

(5.16)

Rigorously, because N < ∞, the estimation is still a random variable. One should denote
V e(θ, ω, z, t). To get rid of the stochastic part of the code, it is assumed N is large enough
to use the large number law. Then, the quantity V e(θ, z, t) approaches a mathematical
expectation:

V e(θ, z, t) '
N→∞

E
[
Vt|Xt ∈ B(z), V o

z,t = V o(θ, z, t)
]

'
∆z→0

E
[
V r
z,t|V o

z,t = V o(θ, z, t)
]

The estimation is the average of all possible realizations of V r
z,t which can lead to the the

observation V o(z, t). As a consequence, V e(z, t) is not equal to the given reference V r(z, t),
but it is not far neither because V r(z, t) is precisely "a realization of V r

z,t which can lead to the
the observation V o(z, t)". Hence, V e(z, t) is still compared to V r(z, t). A criterion of quality
of the reconstruction will the wind root mean squared error (RMSE).

Definition 5.1 (Output rV ).

With words rV is the estimated root-mean-squared error (RMSE) between the estimated
wind and the reference wind.

Formally

rV (θ) =

√√√√ 1
NzNt

Nz∑
z=1

Nt∑
t=1

(V e(θ, z, t)− V r(z, t))2 (5.17)
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Figure 5.29 – Illustration of RMSE of the wind : one of the output of the system.

5.4.2.2 RMSE on TKE

Turbulent medium reconstruction offers several estimations of wind variance, as seen at the
section 1.4. The 1-dimensional TKE is the desired quantity: kr(z, t) = 1

2V (Vz,t). It is
approached by an estimation on the set of particles, ke(θ, z, t). In compliance with Baehr
(2010); Rottner (2015), the chosen estimation is the LSTKE (definition 1.10):

ke(θ, z, t) = kLS(θ, z, t) = 1
2

〈〈(
V i(θ, z, t)−

〈
V i
t (θ, z, t)

〉`)2
〉`〉

The problem is that the reference is not accessible and must be estimated too, with an
independent and well proven estimation. The time TKE (definition 1.6) has such qualities.

kr(θ, z, t′) = 1
2
(
V r(z, t)− V r(z, t)τ

)2τ

However, it requires a time averaging which degrades the time resolution. The LSTKE
ke(θ, z, t) is defined on the time-scale t (every 4 seconds). The TTKE kr(θ, z, t′) is defined on
the time-scale t′ (every τ minutes). Thus the score rk compares two estimations at different
resolution. To fix the difference of resolution, we keep the coarsest resolution for both. That
is to say, the time average is applied to the LSTKE before to be compared to the TTKE. The
associated score is given by the following definition and illustrated by the figure 5.30.
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Definition 5.2 (Output rk).

With words rk is the root-mean-squared error (RMSE) between the guess of TKE from
the particles and the guess of TKE from the reference.

Formally

rk(θ) =

√√√√√ 1
NzN ′t

Nz∑
z=1

N ′t∑
t′=1

(
keτ (θ, z, t′)− kr(θ, z, t′)

)2
dzdt′ (5.18)

Figure 5.30 – Illustration of RMSE of the TKE : one of the output of the system.

5.4.2.3 Number of null potential

The next score is specific to the filtering process. Particle filters are known to degenerate
when the number of particles is small or the dimension is high (see chapter 2 and (Snyder
et al., 2008; Bengtsson et al., 2008; Del Moral, 2004)). This degeneration manifests itself by
the collapse of the potential of particles at the selection step (potential Gobs, equation (5.9)).
The problem when this potential collapses is that a large number of particles is resampled on
a small number of remaining particles. The cloud of particles turns abnormally concentrated
onto few spots. Pushed to its extremity (i.e. when the maximum potential is below the
machine precision), this degeneracy yields to cases where all particles have a null potential.
This situation is illustrated by the figure 5.31. When it occurs, the resampling cannot be
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done: the filtering algorithm crashes. In such cases, it is recommended to reset the cloud
of particles (Del Moral, 2004). Although the resetting avoids the crash, it does not cure the
problem: reset particles are back to an ex nihilo distribution which will need several time
steps to represent again the wind. Hence, the occurrences of such degeneracy are tracked.
Their number is score to assess the well proceeding of the reconstruction: the lower, the
better.

Definition 5.3 (Output NG0).

With words NG0 is the total number of occurrences of null potential.

Formally

NG0(θ) =
∣∣∣∣∣
{

(z, t)/
N∑
i=1

Gobs(θ, z, t, i) = 0
}∣∣∣∣∣ (5.19)

Figure 5.31 – Illustration of null potential: it occurs when particles fairly don’t match the
measurement.

5.4.2.4 Slope of wind power density spectrum

We have seen in the chapter 1 that the power spectrum density (PSD) of the wind has a
-5/3 decrease which is the signature of turbulence. It is required the estimated wind has the
characteristics of turbulence. As a consequence, the PSD of the wind is drawn and compared
to the reference (figure 5.16 ). When the PSD is steeper than the reference, the filter takes
some frequencies of turbulence as noise and remove them. It results an output signal which
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does not look like turbulence. When the PSD is flatter than the reference, the filter does not
remove all the noise. The filter is not efficient. Given the easy interpretations coming out
from the PSD examination, a score has been built to sum up the information. The PSD slope
is estimated by linear regression on the highest frequencies, as illustrated by figure 5.32.

At the vertical level z, the PSD Γ is obtained by taking the squared modulus of the
Fast Fourier Tranform of the time series {V e(z, t), t ∈ [[1, Nt]]}. The vector Γ has n = Nt

2
components, one for each frequency among ξ = (ξ1, ..., ξn) where ξi = 1

i2∆t . According to the
Kolmogorov theory, the PSD of the wind is of the following form:

ΓW (ξ) = C0ε
2/3ξ−5/3

Hence, we would like to describe the estimated PSD with the model (5.20).

Γ = Aξb (5.20)

Taking the logarithm of (5.20) gives a linear model suitable for an ordinary least squares
regression. Nevertheless, the smallest frequencies are not in the inertial domain of turbulence
and the slope of the PSD is no longer supposed to be −5/3. Hence, the regression is done
only on the frequencies above ξc = 1

100∆t . This cutting frequency has been chosen after visual
identification of the inertial domain on several examples. It results the following definition
for the output b.

Definition 5.4 (Output b).

With words b is the slope of the wind power spectrum density estimated by linear re-
gression on the highest frequencies.

Formally

(a, b) = argmin
(α,β)

{
‖ log(ΓI)− α− β log(ξI)‖22, I = {i, ξi > ξc}

}
(5.21)
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Figure 5.32 – The slope b of the wind PSD is estimated by linear regression on the points in
the shaded area.

5.4.2.5 Time of execution

The time of execution Texe has also been added as a criterion of performance. Although it is
not related to the quality of the estimation, it is an important practical constraint. It includes
the loading of the data and the initialisation, but not the writing on output files neither the
calculations on the outputs because these calculations are various and depends on the desired
use of the run.

Definition 5.5 (Output Texe).

With words Texe is the time spent for one execution of the reconstruction code.

Formally
Texe = tend − tstart

5.4.3 Known variations of the outputs

With 9 inputs and 5 outputs, the tested system is rather complex. This is what sensitivity
analysis is about: simplify the study of complex systems. Nevertheless, few results exist to
describe the influence of a parameter on an output.
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5.4.3.1 Influence of N on rV

The influence of N on rV is a direct consequence of law of large number. Hence, it is one
of the most mentioned in the literature (see Baehr (2008); Del Moral (2004); Baehr (2010)
at least). For instance, theorem 3.3 in Baehr (2010) establishes the Lp bound of the Monte
Carlo error for this Lagrangian model:

Theorem 5.1 (Influence of N on rV ).

∀p ∈ N∗, ∀t ∈ [[1, Nt]], ∃Ct(p) ∈ R, E
[
‖ηNt − ηt‖p

]1/p
6
Ct(p)√
N

(5.22)

Applied with p = 2, it tells the score rV should decrease as 1/
√
N . This influence is

expected to give a large Sobol index for N over rV .

5.4.3.2 Influence of N on NG0

The number of null potential decreases exponentially with the number of particles. The proof
is in the appendix B.1. It is based on a result from Del Moral (2004), itself coming from
Azuma-Hoeffding’s inequality.

Theorem 5.2 (Influence of N on NG0). If N > 1 is the number of particles and at any time
there are particles in the probe volume, for any n ∈ N, there exist α(n) > 0 and β(n) > 0
such that

P (NG0 = n) 6 α(n)e−N/β(n) (5.23)

5.4.3.3 Influence of σobs and σadd on NG0

Under some conditions, it is possible to have an approximation of the influence of σobs and
σadd on NG0.

147



Theorem 5.3 (Influence of σobs and σadd on NG0). If the following assumptions are satisfied

• The real wind V r
z,t is stationary at order 2 and ergodic in space and time.

• The particles after conditioning Ṽt are Gaussian with the same mean and variance as
V r
z,t.

Then, the average number of null potential NG0 is bounded from above by a function of σobs
and σadd.

E [NG0] 6 NtNz
(σadd)2 + 2k

−
(
(σobs)2 + 2k

)
log
(
ι22π

(
(σobs)2 + 2k

)) (5.24)

with ι = 10−16, the zero machine threshold, and k = 1
2V
(
V r
z,t

)
(constant thanks to the sta-

tionarity assumption).

The proof is in the appendix B.1. This result tells the average value of NG0 is bounded
by a known function of σobs and σadd. This bound is displayed in figure 5.33 for k = 0.05
and ι = 10−16. One can see that the bound is very low for a large range of values. It
increases rapidly when σadd is high and σobs is low. In the figure 5.31, this situation would be
represented by a narrow histogram and an observation (cyan Gaussian) likely to be far from
it, which makes sense.

The assumptions to fulfil are strong, but usual. The assumption of stationarity is not as
strong as it seems, given that the TKE k is usually estimated over 10, 20 or 30 minutes while
the lidar measures every 4 seconds. One can assume the variations of k are small enough to
be neglected at that scale. The assumption of ergodicity is the strongest. Here as in many
occasions, it is done in spite of something better. The assumption that the particles follow a
Gaussian of mean E

[
V r
z,t

]
and variance 2k implies the particles sample the full probability law

of V r
z,t while in reality they are conditioned to the probe volume and the past observations.
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Figure 5.33 – Theoretical bound for the average of NG0 against σadd and σobs.

5.5 Conclusion

This chapter is at the core of this manuscript, between the state-of-the art chapters and the
results chapters. It presents the reconstruction system with a high level of details and a
particular emphasis on pedagogy. After an introduction with the motivation and notations,
the four steps of the algorithm are described (role, inputs, outputs, comments). Then a
small section is dedicated to developers intending to implement the reconstruction method.
Finally the validation experiment and the resulting scores are presented (diagram, definitions,
theoretical results).

Turbulent wind is a stochastic process. A single realization of it happens and is measured
by a noisy instrument. The reconstruction system aims to retrieve the turbulent wind that
gave such observations. It is composed of four steps: mutation, conditioning, selection and
estimation. The mutation step pushes the state vector (set of particles) from one time step
to the next. The conditioning step fix the problematic case due to the Lagrangian nature of
particles and the Eulerian nature of the measure (that is to say, it treats particles moving
away from the instrument and big wads/gaps of particles). The selection step includes the
observation in the system of particles by a genetic selection algorithm (acceptance/rejection
followed by sampling with importance resampling). The estimation step updates the diagnostic
variables needed for the next mutation step and computes the outputs. It is the only step
which let the state vector unchanged. These four steps form a cycle (see figure 5.14) repeated
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at each time step, up to the end of measurement.

Many quantities are worth to look at in the system of particles. Some examples are
given. From the long hours spent into the implementation, a concise set of checkpoints have
been established. It is recalled that the actual reconstruction system is not suited for stable
atmospheric conditions. To validate the reconstruction system, an experiment has been set
up and quality scores have been defined. The experiment is based on a reference wind.
Some noise is added to this reference wind to get simulated observations. The reconstruction
method is applied to the simulated observations. Then the output of the reconstruction is
compared to the reference wind. Five scores are computed: the root-mean-squared error
(RMSE) of the wind, the RMSE of the wind variance, the number of null potential, the wind
spectrum slope and the execution time. From the construction of such scores, one can derive
some theoretical formulae linking some parameters of the reconstruction to the outputs. The
RMSE on the wind decreases as a square root of the number of particles. The number of null
potential decreases as an exponential of the number of particles. The average number of null
potential is bounded by a function of the added noise and the noise given to the filter.
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Chapter 6

Results of the sensitivity analysis
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6.1 Methodology

6.1.1 System, inputs and outputs

6.1.1.1 System on which sensitivity analysis is done

The system on which the sensitivity analysis is done is a computer code function f that has
some input arguments (X ∈ Rp) and provides some outputs (Y ∈ Rs).

Y = f(X)
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We restrict ourselves to consider the s outputs are independent. Each of the s outputs is
treated separately, so that it is equivalent to the case Y ∈ R, repeated s times. The sensitivity
analysis is carried out on a system allowing the assessment of the reconstruction. It encloses
the reconstruction system, but not only. In particular, a reference wind V r(z, t) is included
to compute the output score. The diagram of this system is given on figure 6.1. It has been
described with more details in the section 5.4.1.

Figure 6.1 – Diagram of the system on which is done the sensitivity analysis.

The inputs have been introduced throughout the the previous chapter. The figure 6.2
reviews the organisation of the computer code and locete the input parameters. At the end
of this chapter, the outputs are described one by one. Let us briefly recall the system here.

6.1.1.2 Inputs of the system

The inputs of the diagram 6.1 are the parameters listed in the boxes 5.7, 5.10, 5.12 and 5.13
of the previous chapter. There are gathered here only in a concise way since they have been
introduced in the previous chapter.

• C0 : Kolmogorov "constant".
This constant appears in the expression of the -5/3 spectrum and in the dispersive term
of the Lagrangian model.

• C1 : The fluctuation coefficient.
This constant in the Lagrangian model pilots the fluctuation term. According to Pope
(1994), there is an empirical relantionship with C0. To test if such relationship is
retrieved by the sensitivity analysis, C1 is considered as separated input.

• ` : Spatial interaction length.
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Figure 6.2 – Situation of the input parameters in the program. The dotted outer circle stand
for the time loop in the reconstruction algorithm.

The estimation of Eulerian average with Lagrangian particles requires the use of a
regularisation kernel of parameter `. The smaller `, the faster the kernel decreases.
Thus, ` is homogeneous to an interaction length.

• N : Total number of particles.

Both the filtering algorithm and the Lagrangian model rely on Monte Carlo approxima-
tion of the wind probability law. The total number of particles (including all vertical
levels) is N .

• σadd : True observation noise.

The instrument is supposed to make a centred Gaussian error. The observations are
simulated by adding a Gaussian error of standard deviation σadd to the reference wind.

• σobs : Observation noise given to the filter.

In practice, the observation noise is set by the instrument and may be unknown. Nev-
ertheless, the filtering algorithm needs a guess for it. This guess is a centred Gaussian
observation noise with standard deviation σobs.

• σV : Default standard deviation of wind speed.
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To avoid concentration of particles on the exact same point during the resampling stages
in the conditioning step, a centred Gaussian of standard deviation σV is added to the
new speed of resampled particles.

• σX : Standard deviation of discretization error in the Lagrangian model.
The Lagrangian model is a stochastic differential equation which is discretized in order
to be solved. The error introduced by this discretization is assumed to be a centred
Gaussian of standard deviation σX and added to the position equation.

• τ : Integration time for TKE calculation.
The TKE is usually estimated by the variance of the wind time series over a time τ
(about 15 minutes). The reconstruction provides an estimation of TKE from spatial
variance every 4s. They are averaged over τ to be compared.

In the end, we count 9 input parameters that are summarized in table 6.1. Hence the
sensitivity analysis model, p equals 9 and X belongs to R9. The sensitivity analysis spots the
impact of a change of an input.

Notation Description Place in the system
C0 Kolmogorov "constant" Reconstruction (Lagrangian model)
C1 Fluctuation coefficient Reconstruction (Lagrangian model)
` Spatial interaction length Reconstruction (Lagrangian model)
N Number of particles Reconstruction (all steps)
σadd True observation noise Simulation of observation
σobs Guess of observation noise Reconstruction (filtering)
σX Discretization error in the Lagrangian model Reconstruction (mutation step)
σV Default standard deviation of wind speed Reconstruction (conditioning step)
τ Integration time Output computation

Table 6.1 – Summary of input parameters for the sensitivity analysis

6.1.1.3 Outputs of the system

Five outputs considered independently are used to qualify the system. They have been de-
scribed in section 5.4.2. They are recalled in the table 6.2. The sensitivity analysis aims to
identify which inputs are to be changed in order to modify the outputs.

6.1.2 Organisation of the results

To pull out the maximum benefit of sensitivity analysis, an efficient graphical representation is
essential. This is why many effort has been done here to provide a wide panel of visualization.
The paper of Iooss and Lemaître (2015) was a fruitful source of inspiration. For each of the
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Notation Description Definition equation Illustration
NG0 Number of null potential NG0 = |{G = 0}| 5.31
b Slope of the wind PSD Γ(ξ) = Aξb 5.32
rk Root-mean-squared error on the TKE ‖kLS(z, t)τ − kT (z, t′)‖2 5.30
rV Root-mean-squared error on the wind rV = ‖V̂z,t − V ref

z,t ‖2 5.29
Texe Time of execution Texe = tend − tstart

Table 6.2 – Summary of output parameters for the sensitivity analysis

5 outputs, an independent sensitivity has been carried out. The inputs are the same. The
sensitivity analysis provides:

• First order main effect Sobol indices estimates Ŝi (color key: blue)

• First order total effect Sobol indice estimatess ŜT i (color key: green).

• Uncertainty on the estimation of first order Sobol indices.

• Second order Sobol indices estimates Ŝij (color key: red).

The estimation of Sobol indices is performed with (Saltelli et al., 2010) estimator for the first
order indices (main and total effect). For the second order Sobol indices, the estimator from
(Saltelli, 2002a) is used. Further details about the diffences of estimations is in section 4.3.2,
especially in table 4.1.

First, the sensitivity analysis are commented separately, one output after another. The
figures representing these information are explained in the next subsection ("Analysis of figures
presented"). For each output, the way it is influenced is examined and commented. The
quality of an output is assessed by the clarity of its response: an output complexly influenced
by many inputs with many interactions will not have a clear response, while an output
influenced directly by few inputs is more informative.

Second, the outputs are gathered to have a more global point of view. The Sobol indices
from the five sensitivity analysis are summed to produce the same figures, thus representing
the system broadly. The Sobol indices are also brought face to face on a tile in order to
identify what input influences what output with how much interactions. Finally, the inputs
are grouped by importance.

6.1.3 Analysis of figures presented

For each output, the same figures are commented:

• Bar chart to visualize the Sobol indices and their uncertainty
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• Pie chart to visualize the share of first and second order (and higher ?)

• Tile to visualize the second order Sobol indices

• Graphs to visualize interactions and important inputs

• Cobweb plots to visualize some effects directly on the response surface

The table 6.3 recaps what information each figure is showing. Each figure is commented in
its caption. The most interesting features are commented in the text at the beginning of the
section.

Information →
Figure type ↓

1st order
Sobol
indices

2nd order
Sobol
indices

Total Sobol
indices

Uncertainty
on

estimation

Initial
response
surface

Bar chart • • •
Pie chart • •

Tile of second
order • •

Graphs of
interaction • • •

Cobweb plots •

Table 6.3 – Information displayed on each figure type.

6.1.3.1 Bar chart of first order Sobol indices

For each output, a bar plot gives the first order
Sobol indices of all inputs. Blues bars show the
main effect Sobol index of the corresponding
input: it represents the influence of this input
alone on the output. Green bars show the total
effect Sobol index of the corresponding input:
it represents the influence of this input includ-
ing all its interactions on the output. The er-
ror ticks and the extremity of the bars stand
for the 95% confidence interval of the estima-
tion. Inputs are sorted according their main
effect Sobol index.
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6.1.3.2 Pie chart of first and second order Sobol indices

The sum of first order (main effect) Sobol in-
dices stands for the proportion of variance ex-
plained by a single inputs. The sum of second
order Sobol indices quantifies the importance
of pairwise interaction. The remaining part of
variance is attributed to higher order interac-
tions. Total Sobol indices are not used in this
figure. This simple chart is used to tell apart
simple influence from high order interaction in-
fluence. Simple influence can be used to tune
the system, while high order interactions imply
side-effects.

6.1.3.3 Tile of second order Sobol indices

On a tile crossing the inputs, the second order
Sobol indices are represented in shades of red.
Each cell is dedicated to the Sobol index of the
interaction between the two inputs in abscissa
and ordinate. The more coloured is a cell in the
tile, the stronger is the interaction between the
two inputs. The tile is thus symmetric. On the
diagonal, the shade is proportional to the first
order (main effect) Sobol index.
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6.1.3.4 Graphs of interaction

Graphs of interaction are inspired from Fruth
et al. (2013, 2014). Vertices are inputs of
the system. Edges connect two inputs which
have a strong enough pairwise interaction (an
edge is displayed if the second order Sobol in-
dex is above a 0.02 threshold). The edges are
shaded according to the second order Sobol in-
dex: small interactions vanish compared to the
strongest ones. On the vertices, two concentric
rings are displayed. The inner ring (blue) has
a width proportional to the main effect Sobol
index. The outer ring (green) has a width
proportional to the total effect Sobol index.
By crossing first order, second order and total
Sobol indices, the graphs also give hints about
the amount of higher order interactions. On
the example on the left, C0 has a large green
outer ring but no edges linked to it: C0 inter-
acts with more than one input. The overall
graph gives an overview of influencing spots
and their interaction.
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6.1.3.5 Cobweb plots

Kurowicka and Cooke (2006) introduce cob-
web plots in the visualization chapter of their
book (see p.193). It represents only the re-
sponse surface of the code f , before the meta-
modelling and the sensitivity analysis. This
graph should be read as follows: the last bar
on the right show the output value (sometimes
in log-scale). It is either the 100 highest values
or the the 100 lowest values. For each value
of output, the corresponding input parameters
are linked by a thread (there is one vertical
bar per input and all inputs are normalized to
be inside [0, 1]). The overall picture reveals
if there is any pattern leading high/low out-
put values. On the example on the left, the
100 lowest outputs are displayed. The threads
show it is associated to low values of σadd and
σobs and high values of N . Thus such inputs
are expected to be influential and the cobweb
plot also give the "sign" of their influence. As
this graph depicts only the response surface, it
does not suffer from meta-modelling approxi-
mation neither from Sobol indices estimation.
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6.2 Output by output analysis

To start the presentation of the results, the five sensitivity analysis are taken separately. For
each output, the influential inputs are identified, their level of interaction is commented. Since
the outputs are scores to assess the reconstruction, they can also be used to tune the input
parameters to make the reconstruction better performing. The sensitivity analysis help to
discuss this opportunity.

6.2.1 Influence on number of null potential

The number of null potential (denoted NG0) is the symptom of a problem when it is large.
Full description is given is the previous section.

The bar chart 6.3 is sorted according the main effect Sobol indices (blue bars). The
total Sobol indices (green bars) have a very different order. It points out a large importance
of interactions which are not involving the inputs influencing alone. The large weight of
interactions is sustained by the pie chart 6.4 (76% of influence is due to pairwise interactions).

One can see that the most influencing input, both in main and total effect, is the a priori
standard deviation of the noise σobs. It is the highest bar in figure 6.3. The influence of σobs
is for half direct, for half through interactions. The tile 6.5 shows these interactions are with
C0, C1 and `.

Next in the figure 6.3 is σadd. It has the second largest first order Sobol index. But it
interacts less than C0 and C1, which makes its total Sobol index only the 4th largest. These
interactions are also with C0, C1 and `, according to the graph 6.6.

The standard deviation of discretization error σX has also a quite large first order Sobol
index. It is also involved in many pairwise interactions (especially with C0 and C1, σV on a
second hand).

The next two parameters in 6.3 are C0 and C1. Although their first order Sobol index
is quite small, their total Sobol index is large. It means they are not influential alone, but
mostly through interactions. These interactions are mostly pairwise, as one can check on the
tile 6.5 and the graph 6.6. In particular, C0 has strong pairwise interaction with all other
inputs.

It is notable that N seems to have a very small influence on the number of null potential,
although there is a theoretical result to describe it. Either it points out a lack in the sensitiv-
ity analysis (this influence should be visible in Sobol indices and is not), either the influence
of N on NG0 is weaker than other influences (because N is large enough for example). To
sort this out, the cobweb plot is useful. One can see in the figure 6.7 that no scheme is visible,
neither for N , nor for any input. For the 100 highest number of null potential, one can see
in 6.8 that is associated to small C0, high C1, high σadd and low σobs. In particular, N does
not appear to be influential. Cobweb plots does not rely on the sensitivity analysis results,
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but only on the direct response of the system to a sample of inputs. It proves that the Sobol
index of N is due to the small influence of the mechanism describe by theorem 5.2 compared
to others. An explanation for this small influence is that N is always large enough to ensure
the filter does not degenerates.

The sensitivity analysis of NG0 shows this output is influenced mostly by pairwise interac-
tions between inputs. Despite few inputs have a remarkable influence alone (σobs especially)
it is not enough to master this output. The number of null potential is a hardly controllable
output. It will not be used as a tuning output.

Figure 6.3 – First order and total Sobol indices for the number of null potential with 95%
confident interval.

161



Figure 6.4 – Proportion of 2nd and 1st order for the number of null potential. Most of the
influence is due to pairwise interaction. A quarter is due to direct effect. Almost none is due
to higher order.

Figure 6.5 – Tile of 2nd order Sobol indices for the number of null potential. Many pairwise
interactions are influencing the output. In particular C0 interacts with almost every inputs
but has a very little influence alone. Conversely, the influence of σobs is mostly direct.
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Figure 6.6 – Graph of interaction for the number of null potential. Pairwise interaction
are strong and numerous. C0 interacts with almost every inputs, especially with σX . The
difference between total and simple Sobol index is mostly due to second order interaction,
not higher.
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Figure 6.7 – Cobweb plot for low number of null potential. No scheme is visible.

Figure 6.8 – Cobweb plot for high number of null potential (NG0 in log-scale). It is high for
low C0, high C1, high σadd, low σobs.
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6.2.2 Influence on PSD slope

The power spectrum density (PSD) of the wind has a characteristic -5/3 slope in log-log scale
when the wind is measured in inertial turbulence (see figure 5.32 for an illustration).

In figure 6.9, one can see that total Sobol indices estimates are close to simple Sobol
indices estimates. It indicates few interactions are at stake for this output. It is confirmed by
the pie chart 6.10 where direct influences account for 86% of the total. Pairwise interactions
are very weak, as it is proved by the second order Sobol indices tile 6.11 and the graph of
interactions 6.12. The influence is massively direct and only few parameters are influential.
Only four inputs have a significant influence, the others are very weak. The most influential
is σadd. It is closely followed by σobs. And then by C0 and C1, which have almost equal
influences. Such influence are visible on the cobweb plots 6.13 and 6.14. Low wind spectrum
slope occur with high C0, low C1, low σadd, high σobs (see figure 6.13), while high values for
the wind spectrum slope are given by low C0, high C1, high σadd, low σobs and small σX (see
figure 6.14). It confirms the major influence of σadd and σobs first, C0 and C1 next, but also
points out an asymmetric influence of σX , probably due to high order interaction. The rest
of the inputs have a negligible influence.

The wind spectrum is only affected by σadd, σobs, C0 and C1. Their influence is mostly
direct, interactions are very weak. Hence, the wind spectrum is easily controllable. It can be
used to tune the inputs.
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Figure 6.9 – First order and total Sobol indices for the wind spectrum slope with 95% confident
interval.

Figure 6.10 – Proportion of 2nd and 1st order influence for the wind spectrum slope. Most of
the influence is due to direct effect (86%). Very little is due to pairwise interaction (14%).
Order 1 and 2 totalize 1.01 over 1. Even with uncertainty, higher order interactions are
negligible.
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Figure 6.11 – Tile of 2nd order Sobol indices for the wind spectrum slope. Almost no pairwise
interaction. Four inputs have a direct influence and that is all.
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Figure 6.12 – Graph of interaction for the wind spectrum slope. Almost no pairwise interaction
(only a weak interaction between σadd and σobs). No trace of higher order interaction.
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Figure 6.13 – Cobweb plot for low wind spectrum slope. It is associated to high C0, low C1,
low σadd and high σobs.

Figure 6.14 – Cobweb plot for high wind spectrum slope. It is associated to low C0, high C1,
high σadd, low σobs and small σX .
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6.2.3 Influence on TKE RMSE

The RMSE on TKE (rk) is a score to compare the fast TKE estimation with the usual way of
computing TKE. Although its construction is complex, it is expected to have an exploitable
behaviour. That is to say, it is expected to be small when the reconstruction performs well.

A look at the first order bar chart 6.15 shows that the main effect Sobol indices are very
small for this output. The most influential input alone is σadd, with a first order Sobol index
of only 0.094. It is followed by C1, C0 (about 0.05) and ` (about 0.037). Most of the influence
is due to interactions, as confirmed by the large gap between simple and total Sobol indices.
What displays the pie chart 6.16 is that these interactions are not only pairwise, but at 27%
of higher order. Conversely to other outputs, a large part of the variability of rk cannot be
explained with the experiments carried out in this thesis. The cobweb plot 6.19 for low rk is
very fuzzy, which sustains the available information are limited. RMSE on TKE seems to be
low when C0 and C1 are different, σadd is rather small and τ is small. Nevertheless, pairwise
interactions are important in number (11 edges visible on the graph 6.18) and in strength (in
figure 6.17, they have a shade comparable to the first order indices on the diagonal). None
input is left alone. The cobweb plot 6.20 for high rk displays visible features. RMSE on TKE
is high when C0 is low, C1 is high, ` is high and σadd is high. There are not the inverse of
what the cobweb plot for low rk displays. For example, τ needs to be low to provide low rk
but does not need to be high to provide high rk. It highlights an asymmetric influence of τ
and others.

The RMSE on TKE has very complex variations. It is poorly influenced by inputs alone,
but mostly by inputs in interactions, including a large part of high order interactions. As a
consequence, this output is very difficult to control. It cannot be trusted to tune the inputs.
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Figure 6.15 – First order and total Sobol indices for the RMSE on TKE with 95% confident
interval.

Figure 6.16 – Proportion of 2nd and 1st order for the RMSE on TKE. Only 25% of variance
is due to direct influence. Second order interactions have a large share (about 47 %). But it
leaves about 27% to higher order interactions.
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Figure 6.17 – Tile of 2nd order Sobol indices for the TKE RMSE. Pairwise interactions are as
strong as direct influence (on the diagonal).
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Figure 6.18 – Graph of interaction for the RMSE on TKE. Simple Sobol indices are notably
small, to the advantage of total Sobol indices which are significant for all inputs. Pairwise
interactions are strong and rather numerous. But higher interactions might be at stake to fill
the gap between simple and total Sobol indices.
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Figure 6.19 – Cobweb plot for low TKE RMSE. It is associated to nothing really clear,
excepted opposite C0 and C1, small τ and rather small σadd.

Figure 6.20 – Cobweb plot for high TKE RMSE. It is associated to small C0, high C1, high
` and high σadd.
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6.2.4 Influence on wind RMSE

The RMSE on wind (rV ) is the L2 error of the estimated wind compared to the reference
wind. The lower rV , the better the wind retrieval.

According to the figure 6.21, the most influential inputs on the wind retrieval error are
σadd, N , C0 and σobs. The influence of N though the Theorem 5.1 is thus a mechanism of
importance. A notable feature is that the simple and total Sobol indices are ranked in the
same order. It means the strongest inputs alone are also the strongest through interactions.
Conversely to the wind spectrum slope, the interactions are significant here, as shown by the
pie chart 6.22. The 2nd order tile 6.23 points out that the strongest interactions are essen-
tially between inputs also strong alone (σobs and σadd ; N and σadd, but not N and σobs). On
the graph of interactions 6.24, C0 does not display any pairwise interaction but does display
interactions. It proves that the interactions in which C0 is involved are higher order than 2.
The cobweb plots 6.26 and 6.25 point out quite clear schemes: rV is high when N is low, σadd
is high, C0 is low and C1 is high. Conversely, rV is low when N is high, σadd is low and σobs
is low. These trends confirm the influence seen in the Sobol indices.

The output rV is mainly influenced by few inputs with a strong first order Sobol index
(σadd, N , C0 and σobs). These inputs also responsible for the most important pairwise inter-
actions. The sensitivity analysis reveals only few inputs are to consider to master the wind
RMSE. As consequence, it is an output rather easy to control.

175



Figure 6.21 – First order and total Sobol indices for the RMSE on wind with 95% confident
interval.

Figure 6.22 – Proportion of 2nd and 1st order for the wind RMSE. The major part of the
influence is direct. Although, pairwise interaction account for 39% of the influence. No trace
of higher order interaction is visible here.
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Figure 6.23 – Tile of 2nd order Sobol indices for the wind RMSE. Some pairwise interactions
have a strong influence on the output (σobs and σadd ; N and σadd). The inputs involved in
these interactions have also a strong influence alone.
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Figure 6.24 – Graph of interaction for the wind RMSE. The strong inputs alone (σadd, σobs,
N) also interact among them. C0 interacts (large outer ring) but not pairwise, thus it interacts
at higher order.
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Figure 6.25 – Cobweb plot for low wind RMSE. It is associated to high N , low σadd and low
σobs.

Figure 6.26 – Cobweb plot for high wind RMSE. It is associated to low N , high σadd, low C0
and high C1.
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6.2.5 Influence on computing time

The interpretation of all the figures related to this output is clear: only the number of par-
ticles leads the computing time. The influence of N overwhelms any other. It has a very
large first order Sobol index (figure 6.27) which dominates all the rest (see pie chart 6.28, 2nd

order tile 6.29 or interaction graph 6.30). It may have been possible that some of the others
parameters have an influence. For example, σobs controls the number of rejected particles.
The more rejected particles, the more resampling must be done. Another example, σV helps
to avoid gathering of particles. A loop in the conditioning step is repeated while particles are
not spread enough. Although resampling and repeating a loop requires more calculus, the
sensitivity analysis shows they are negligible compared to the cost implied by the number of
particles.

The execution time is a very handy output, which can be controlled easily. Unfortunately,
it tells nothing about the quality of the reconstruction. It is only a trade-off variable to plan
numerical experiments.

Figure 6.27 – First order and total Sobol indices for the execution time with 95% confident
interval.
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Figure 6.28 – Proportion of 2nd and 1st order influence for the execution time. Direct effect
overwhelms interactions.

Figure 6.29 – Tile of 2nd order Sobol indices for the execution time. No pairwise interactions
are significant. Only N has an influence on this output.

181



Figure 6.30 – Graph of interaction for the execution time. Only N has an influence.

Figure 6.31 – Cobweb plot for low execution time. It is associated to low N .
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Figure 6.32 – Cobweb plot for high execution time. It is associated to high N .

183



6.2.6 Summary

From the separated analyses of the results for the five outputs, it is possible to highlight
the most influential parameters and the share of interactions for each output. The system
presented in figure 6.1, quite heavy to run, is emulated by a surrogate model (Gaussian process
kriging). Sobol indices have been estimated with the estimators in table 4.1. An output can
be used as a tuning output if it is poorly influenced by interactions.

The sensitivity analysis of NG0 shows this output is influenced mostly by pairwise interac-
tions between inputs. Despite few inputs have a remarkable influence alone (σobs especially)
it is not enough to master this output. The number of null potential is a hardly controllable
output. It will not be used as a tuning output.

The wind spectrum is only affected by σadd, σobs, C0 and C1. Their influence is mostly
direct, interactions are very weak. Hence, the wind spectrum is easily controllable. It can be
used to tune the inputs.

The RMSE on TKE has very complex variations. It is poorly influenced by inputs alone,
but mostly by inputs in interactions, including a large part of high order interactions. As a
consequence, this output is very difficult to master. It cannot be trusted to tune the inputs.

The RMSE on wind is mainly influenced by few inputs with a strong first Sobol index
(σadd, N , C0 and σobs). These inputs are also responsible for the most important pairwise
interactions. The sensitivity analysis reveals only few inputs are to consider to master the
wind RMSE. As consequence, it is an output rather easy to control.

The execution time is very handy output, which can be controlled easily. Only the number
of particles N has a influence on it. Unfortunately, it tells nothing about the quality of the
reconstruction. It is only a bargain variable to plan numerical experiments.
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6.3 All outputs analysis

Sensitivity analyses have been first build to assess the influence of several inputs on one
output. On this system, there are 5 outputs : the number of null potential NG0, the slope
of wind PSD b, the RMSE on TKE rk, the RMSE on wind rV and the execution time Texe.
Hence the same sensitivity analysis has been repeated on each output. This was a choice of
simplicity. Indeed, the paper of Gamboa et al. (2014) defines two indices suitable to vector
output (even to functional ouput) which coincide with Sobol indices for a scalar output.
Although a simpler computation, we will keep this result in mind for the comment of the
results.

Having several outputs allows one to reverse the problem: how influential is a given input
on all outputs? When one is moving a given input in order to get better results for a given
output, what are the side-effects of this move? A first source of side-effect is the involvement
of the given input in influential interactions. A second source of side-effect is the influence
of the given input on other outputs. If the move improves the first output, it might degrade
another one. This question is interesting because the 5 outputs are 5 scores on different
aspects of the reconstruction.
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6.3.1 Global analysis

In this section, we adopt a more global point of view: all outputs are taken together. The
five outputs are ordered as follow:

Y =


NG0
b

rk
rV
Texe


The Hoeffding decomposition is valid for this vector output too.

Y =
∑
u∈I

fu(Xu)

As long a inputs are independent, this decomposition holds for variances. If we denote
Σ = V (Y ) and Cu = V (fu(Xu)), we have

Σ =
∑
u∈I

Cu

Then the first estimator defined in Gamboa et al. (2014) is

Su(Y ) = tr(Cu)
tr(Σ) (6.1)

where tr(·) is the trace operator. In the paper, they also suggest a method of estimation that
has not been implemented in this work. Nevertheless, it is possible to link the Sobol indices
obtained independently to the global sensitivity index defined at equation (6.1). Without
introducing new notations, we write

tr(Σ) = V (NG0) + V (b) + V (rk) + V (rV ) + V (Texe)

tr(Cu) = V (E [NG0|Xu]) + V (E [b|Xu]) + V (E [rk|Xu]) + V (E [rV |Xu]) + V (E [Texe|Xu])

For each scalar output (for instance rV ) the Sobol index is the ratio V(E[rV |Xu])
V(rV ) , thus we have

the following relationship:

Su(Y ) = V (NG0)
tr(Σ) Su(NG0) + V (b)

tr(Σ)Su(b) + V (rk)
tr(Σ) Su(rk) + V (rV )

tr(Σ) Su(rV ) + V (Texe)
tr(Σ) Su(Texe)

(6.2)
That is to say, with a ponderation by the variance of the output, the Sobol indices obtained
by five separated sensitivity analyses yield to the index for vector output in Gamboa et al.
(2014). This index is shown to have very nice properties:

• It sums up to 1:
∑

u∈I Su(Y ) = 1

• Invariant by isometry: ∀O such that OTO = Is, Su(OY ) = Su(Y )
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Output Min Max Unit
NG0 0 7524 none
b -4.716 0.772 none
rV 0.011 1.5 m·s−1

rk 0.129 13.93 m2·s−2

Texe 24.17 3968 s

Table 6.4 – Range of variations of the outputs (from original response surface).

• Invariant by scaling: ∀λ 6= 0, Su(λY ) = Su(Y )

The drawback of this weighting is that the ranges of variation of outputs are not taken into
accounts. Outputs taking large values will have a larger weight than the others. It is the case
here (see table 6.4). Thus, NG0’s Sobol indices accounts for 80% of the vector output Sobol
indices, Texe accounts for the remaining 20% and the others for nearly 0%, as shown in figure
6.33. The inputs influencing these output will be overrepresented in the final interpretation.

Figure 6.33 – Proportion of variance in the vector output.

To avoid this issue, in this section, all outputs are taken together with equal weight. The
Sobol indices from the five sensitivity analysis have been summed. Unlike equation (6.2), the
Sobol indices presented now are obtained by

Su(Y ) = Su(NG0) + Su(b) + Su(rk) + Su(rV ) + Su(Texe)

The resulting scores does not sums up to 1 but give an overview of the influence of a given
input or a given pair of inputs. They are displayed in the same way as previously.

In figure 6.34 is the pie chart of first and second order influence proportion. It tells the
influence is mostly direct, with 68% of first order. Still, second order Sobol indices account
for nearly 32%, which is not negligible. This figure does not tell anything about higher order

187



interaction because it only apportions first and second order contributions. In the figure 6.16
for example, the same pie chart is relative to a single sensitivity analysis. The higher order
contribution can be estimated by the leftover after first and second orders have been removed,
because the sum of all contributions is 1. This is no longer the case for the pie chart 6.34
because it sums up five independent sensitivity analysis.

Figure 6.34 – Proportion of first and second order for all outputs.

In figure 6.35 is the tile of second order Sobol indices. Each cell is dedicated to the Sobol
index of the interaction between the two inputs in abscissa and ordinate. This interaction
is quantified by the sum of the second order Sobol indices for the five outputs. The more
coloured is a cell in the tile, the stronger is the overall interaction between the two inputs.
The tile is thus symmetric. On the diagonal, the shade is proportional to the sum of first
order (main effect) Sobol index for the five outputs. This figure highlights the most influential
inputs (deepest coloured cells on the diagonal): C0, C1, N , σadd, σobs. It also gives the most
important interactions (deepest coloured cells out of the diagonal): C0 with σX , C1 with σX ,
C1 with σadd, σadd with σobs for the 4 major. A notable thing is that the most influential
inputs alone are also doing the most influential interactions. Globally, controlling these inputs
is enough to master the whole system. From this result, one could imagine the inputs `, σV
and τ can be fixed to a constant value without disturbing the system. It reduces to number
of inputs and makes the system simpler.

In figure 6.36 is the graph of interaction obtained with the sum of the Sobol indices from
all sensitivity analysis. We retrieve the same conclusion as with the tile 6.35 : the most influ-
ential outputs are N , σadd, σobs, C0 and C1. The interactions between these inputs are also
the strongest ones. Beside this top 5, the input σX interacts strongly with C0 especially, but
also with C1. The input ` is also visible because of many interactions, but these interactions
are weaker in the tile 6.35 than they appear on the graph 6.36. The others (σV , τ) are not
influential alone, nor though interactions. As a consequence, they can be removed safely from
the following studies on the system. If required, the next inputs to remove are ` first, then σX .
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Figure 6.35 – Tile of 2nd order Sobol indices for all outputs.
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Figure 6.36 – Graph of interaction for all outputs.

6.3.2 Crossing input and output

To keep the global point of view adopted in this section, the results from the previous section
have been collected in a synthetic way which crosses input and outputs. By doing so, one can
see what side-effects may have the change of one input.

In figure 6.37, outputs are in abscissa and inputs are in ordinate. The shade of color is
proportional to the corresponding simple first order Sobol index. We retrieve clearly the same
top 3 inputs : N , σadd and σobs. Because of the color scale imposed by the very high Sobol
index of N on Texe, the two next inputs revealed by the previous figures, C0 and C1, appear
lightly. Moreover, C0 and C1 have a larger contribution in interaction, which is not displayed
in this figure. Among the top 3 inputs, the figure 6.37 reveals they are not ranked equally for
the five outputs. σobs has a strong influence on NG0 and b, but not on rV , rk nor Texe. σadd
has a strong influence on rk, rV and b, but not on NG0 nor Texe. N has a strong influence
on Texe and rV , but not on NG0, b nor rk. Hence, the side-effect of changing several outputs
by moving a single input is clearly stated here. For example, a move of N will not have any
side-effect on NG0, b nor rk. This is an important information in order to make a tuning of
inputs.

For the side-effect due to interaction, the move of an input does not have the expected
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effect because of interactions involved. It is thus interesting to look at the strength of in-
teractions. The figure 6.38 shows the interaction part deduced from the Sobol indices (the
difference between the total and simple Sobol indices). It appears that the lines Texe and b
are almost empty. We have seen in the section "Output by output" that Texe and b are weakly
influenced by interactions. This is confirmed by this observation. It tells the moving of any
variable will not imply side-effect due to interactions on Texe and b. It is also visible that the
columns σV and τ look empty as well (even ` to a lesser extent). It tells a variation of σV or τ
will not have side-effects due to interactions. We have seen in the examination of figure 6.37
that σV or τ have no direct effect neither. Hence, they can be removed of the study without
any bad return.

This subsection pointed out the inputs variables do not account equally in the system.
Three outputs appear to be the main ones: N , σadd and σobs. Beside them, C0, C1 also have
a large part of influence but less direct effects. They are followed by two inputs which are
not as influential but notable because of the interactions they are involved in: ` and σX .
Eventually, the two last inputs have been shown to be globally not influential: σV and τ . To
sustain this, the ranking of inputs according to their average Sobol indices1 is displayed in
table 6.5. The order slightly changes between simple and total Sobol indices, but only inside
one group.

Overall influence

Alone N σadd σobs C0 C1 σX ` τ σV

0.223 0.188 0.115 0.042 0.034 0.016 0.007 -0.002 -0.004

Total σadd N σobs C0 C1 σX ` σV τ
0.373 0.322 0.235 0.215 0.158 0.115 0.074 0.04 0.038

Group 1 Group 2 Group 3 Group 4

Table 6.5 – Average first order Sobol indices for each input.

1It is the average of the Sobol indices provided by the five sensitivity analysis
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Figure 6.37 – 2D color plot of simple Sobol indices. The influence alone of one input on one
output is proportional to the color strength.

Figure 6.38 – 2D color plot of interaction part (difference between total and simple Sobol
indices). The influence on one output of interactions in which is involved an input is propor-
tional to the color strength.
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6.3.3 Sobol indices by input

For more detailed view of potential side-effects, bar chart of Sobol indices by input are dis-
played. Both interaction and main effect are represented with their 95% confident interval.
It avoids issues of color scale like in the tile 6.37. They are the same Sobol indices as in the
section "Output by output analysis". The average value given on the figures are the average
over the five outputs, as in table 6.5. The inputs are gathered by group of influence, as they
appear after the examination of the figures earlier in this section. The first group gathers the
top 3 inputs: N , σadd and σobs. They are the predominant inputs, especially by their direct
effect. The second group gathers C0 and C1, which have a weaker direct effect than the 3
previous but are still remarkably influential. The third group gathers ` and σX , which do
not account as much as the 5 previous but still have a significant weight though interactions.
The fourth and last group gathers σV and τ , which do not appear significant in the previous
figures.

6.3.3.1 Most influential inputs: N , σadd and σobs

In figure 6.39, the Sobol indices of σadd show this input has a strong influence on b (wind
spectrum slope) and rV (wind RMSE), then on rk (TKE RMSE) and NG0 (number of null
potential) to a lesser extent. In practice, σadd is not known. Only a guess of it is known:
σobs. Although σadd cannot be tuned, σobs can be.

The figure 6.40 shows σobs has a strong influence on b (wind spectrum slope) and NG0
(number of null potential), then on rV (wind RMSE) to a lesser extent. Thus, a change of
σadd in order to correct the wind spectrum, for example, will have a strong side-effect on the
number of null potential and a smaller side-effect on the wind RMSE.

It is interesting to notice they have a different influence while they are supposed to rep-
resent the same thing. Both influence strongly the wind spectrum. But the next output to
be influenced is NG0 for σobs, while it is rV for σadd. An explanation for this observation is
the very different use of both parameters in the system: σadd is only used to add noise to
the reference data, while σobs is used to remove this noise by filtering. It explains why σobs
has a more direct influence on NG0, which is a score specific to the selection step. On the
other hand, σadd directly increases wind RMSE, while the effect of σobs is diluted by the other
parameters of the filtering process.

At the examination of figure 6.41, one can see the influence of N is mostly due to its over-
whelming influence on the time of execution. Nevertheless, it strongly influences the RMSE
on the wind. This influence is sustained by theorem 5.1. The setting of N is thus a trade-off
between allocated computing time and desired error on wind retrieval.
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Figure 6.39 – Sobol indices : main effect
(blue) and total effect (green) of true mea-
surement noise.

Figure 6.40 – Sobol indices : main effect
(blue) and total effect (green) of measure-
ment noise given to the filter.

Figure 6.41 – Sobol indices : main effect (blue) and total effect (green) of number of particles.
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6.3.3.2 Less influential inputs: C0 and C1

The parameters C0 and C1 are less influential than the others in the first group. Especially,
the part of interaction in their influence is larger than for N , σadd and σobs, as one can see
in figures 6.42 and 6.43. They have also in common to appear only in the Lagrangian model,
which is in use only is the mutation step. Their influence highlights the benefit (or the curse)
to have a well chosen model. They have a nearly equal influence on the wind spectrum. For
C0 the first output is rV , while for C1, the first output is b. Turbulence modelling gives more
insight about what should be their value. The sensitivity analysis points out that an error on
the value of C0 will have a side-effect on the wind RMSE, the wind spectrum and the number
of null potential, in addition to other side-effects due to interactions, especially on the TKE
RMSE. An error on C1 will not have a direct side-effect on the wind RMSE, but beside this,
the side-effects are the same as for C0.

Figure 6.42 – Sobol indices : main ef-
fect (blue) and total effect (green) of Kol-
mogorov’s constant.

Figure 6.43 – Sobol indices : main effect
(blue) and total effect (green) of fluctuation
coefficient.
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6.3.3.3 Involved in strong interactions: ` and σX

The two inputs ` and σX have been put in the same group because they have a similar
influence. Like C0 and C1, the interactions are responsible for a large share of their influence.
Actually, it has been seen that C0 and σX have the strongest pairwise interaction overall
(figure 6.35 and 6.36). But conversely to C0 and C1, modelling cannot help to set this
parameters. They have been introduced to make the algorithm functional and there is no
study of their effect. Hopefully, the sensitivity analysis show their influence is not massive.
Moreover, the deep comment made here help to understand better their influence.

As one can see in the figure 6.44, ` influences only rk directly. Hence, a bad setting of
` will have a small direct effect only on rk. But it can also have many side-effects on NG0,
rk and rV because of interactions. It has been shown on the graph 6.36 that ` has pairwise
interactions with σadd, σobs, N and C1. The interaction between ` and σadd or σobs or N
is probably due to the TKE estimation. The formula for the estimation of TKE involves
explicitly N and `, and it is an estimation of the variance of the wind, which is driven by σadd
and σobs. The influence between ` and C1 is due to the local average in the fluctuation term.

In figure 6.45, one can see the small direct effects of σX affect NG0, rk and rV . They
are also the outputs affected by the weight of σX in interaction. The pairwise interaction of
σX and C0 is necessary in the mutation step: C0 is in the dispersion of the speed equation,
σX is in the dispersion term in the position equation. By integration, σX and C0 interact.
It has for consequence that NG0 is strongly affected by this interaction (the more particles
are disturbed at the mutation, the more they are rejected at the selection) while rV is not
(because the selection step filters out the defaults of the mutation).
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Figure 6.44 – Sobol indices : main effect
(blue) and total effect (green) of interaction
length.

Figure 6.45 – Sobol indices : main effect
(blue) and total effect (green) of standard de-
viation of discretisation error.

6.3.3.4 Not influential: σV and τ

The last group is composed of σV and τ which have shown no significant influence on any
of the five outputs. The figures 6.46 and 6.47 confirm it. It is valuable result to reduce the
dimension of the system. It also raises questions about their role in the system.

τ is only involved in the calculus of the score rk. It has no significant influence on rk,
which tells the way the score is calculated cancel the effect of τ . It has no significant influence,
but still has a non-zero Sobol index for other outputs (especially rV and NG0). This false
alarm is attributed to the stochastic nature of the code. Although the range of N and the
scores has been chosen in order to kill the variability of the outputs, the remaining variations
might be visible for poorly influential parameters.

σV appears only at the conditioning step. Given the usual amount of particles affected
by the conditioning step (particles out or redistributed in figure 5.20: an average of 1.9%
of the total number of particles), this non-influence is not surprising. Although, during the
development phase of the reconstruction algorithm, σV was added to avoid crashes caused by
concentrations of particles at the same location. The sensitivity analysis shows that beside
avoiding crashes, σV has no other effect, which is a good news.
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Figure 6.46 – Sobol indices : main effect
(blue) and total effect (green) of default stan-
dard deviation on wind.

Figure 6.47 – Sobol indices : main effect
(blue) and total effect (green) of integration
time.

6.3.4 Summary

The influence of inputs on the overall system has been assessed by summing the Sobol indices
of the five independent sensitivity analysis. It results that inputs can be gathered in four
groups:

1. The most influential variable: σadd, N and σobs.
They all have a strong direct influence. σadd has a strong influence on b (wind spectrum
slope) and rV (wind RMSE). N has a strong influence on Texe (time of execution) and
rV (wind RMSE). σobs has a strong influence on b (wind spectrum slope) and NG0
(number of null potential), then on rV (wind RMSE) to a lesser extent.

2. Less influential variable: C0 and C1.
Turbulence modelling gives more insight about what should be their value. An error on
C1 impacts b (wind spectrum) and NG0 (number of null potential), in addition to other
side-effects due to interactions, especially on rk (TKE RMSE). An error on C0 impacts
the same outputs as C1 plus the wind RMSE rV .

3. Involved in strong interactions: ` and σX .
Errors imply side-effect though interactions, mostly on rk and NG0.

4. Not influential: σV and τ
Can be removed to simplify the system. Their absence of influence can be explained.
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6.4 Conclusions

The results of the sensitivity analysis have been commented in two ways. First, the outputs
have been analysed separately in the aim to keep the outputs the most suitable to tune the
system. Second, the inputs have been ranked according to their global impact on the system.
It yields to a strategy of inputs tuning which ensures the system is performing well.

First, the outputs are selected according to the interaction share in their influence and the
number of inputs having a significant influence. The time of execution is the most suitable to
tune the inputs. Indeed, only N is influential and it is almost not affected by interactions. But
it is more a trade-off output than a real quality score. The wind spectrum slope is influenced
by σadd and σobs, by C0 and C1 next, with a very small share of interaction. The wind RMSE
is influenced by σadd, N , C0 and σobs. Some interactions are influential, but they involve
only the parameters which are already influenced alone. Hence, the interactions bring no
additional side-effect. The number of null potential and the TKE RMSE are strongly affected
by interactions involving many inputs. They are not selected to tune the system.

Second, the outputs have been gathered to study the inputs from a global point of view.
The inputs are selected according to the side-effect expected when they are moved. It is
scored by their average first order Sobol index and their interaction share. Four groups of
inputs have been identified. The first group is composed of σadd, N and σobs. They are the
most influential variables, especially on the best outputs that are b and rV . The second group
is composed of C0 and C1. They have a large influence, but their interaction share imply
side-effects. The turbulence modelling brings additional knowledge about them. The third
group is composed of ` and σX . They are not very influential alone, but are involved in strong
interactions. The fourth and last group is composed of σV and τ . They are not influential.

Putting all these conclusions together, it yields to the following strategy to ensure the
system is performing well. A relevant reduction of the system would be to keep the inputs
σadd, N and σobs and the outputs Texe, b and rV . The inputs C0 and C1 can be correctly
set thanks to turbulence modelling insights. The observation noise is unknown but constant.
First, the output b is used to set σobs. Next, N is set by trade-off between the outputs rV
and Texe.
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Chapter 7

Exploration with 2-by-2
experiments
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7.1 Introduction

7.1.1 What are 2-by-2 experiments ?

The idea of 2-by-2 experiments is the following. After a first work of development, a new
system (denoted by a function f , such as in figure 6.1) is built and a sensitivity analysis
is desired. The first phase of development usually provides a set of values for the input
parameters for which the system globally works and a guess on the range in which they
belong. The sensitivity analysis will explore the influence of the input parameters when they
browse this range.

Sensitivity indices (such as Sobol indices) provide a quantification of the influence of an
input by a single value, without any assumption on the system. But a single value is a very

201



short summary of the influence. The form of the function f is a much more fertile knowledge
on the system because it can be interpreted.

So called "One-At-Time" (OAT) methods are very informative about the form of f . Using
the nominal values and the range of variations provided by the development phase, OAT
methods make one input vary while the others are set to a nominal value. By doing so, it is
possible to draw the evolution of outputs when this input varies. But this method looses the
effect of interactions between inputs (Saltelli and Annoni, 2010) and there is a chance that
the nominal value of another input hinders the effects of the moving input.

On another hand, let all the inputs vary is the good method to catch all variations, as
we have seen in sensitivity analysis. But the shape of f is not accessible when all inputs are
moving. Only projections can be drawn, and they are poisoned by the variations of others
parameters.

Let 2 inputs vary is a compromise to keep the drawing capacity of OAT and the possibility
to take interactions into account. Such experiments are denoted as 2-by-2 experiments. It
is a way to check the main features pointed out by the sensitivity analysis. The expected
result is to find the mechanism at the origin of the influence in order to control it (to reduce
uncertainty or to tune the system to various situations). The total experimental plan is
summarized in the table 7.1, but the resulting figures are too numerous to be all included in
the main matter. To make browsing easier, hyperlinks to the appendix are inside the table
7.1. The experimental plan can also be represented by a graph: vertices are input parameters
and edges exists between two inputs for which a 2-by-2 experiment has been carried out. The
resulting graph of the present experimental plan is shown figure 7.1. For each edge of the
graph 7.1, the five outputs have been computed. The inputs connected by the edge are the
only ones to move, the others stay at their nominal value. Both nominal values and ranges
of variation are recap in the table 7.2.

C0 C1 ` N σadd σobs σV σX τ

C0 p.303 p.306
C1 p.303
` p.306 p.312 p.315 p.318
N p.312 p.321 p.324 p.327
σadd p.315 p.321 p.330 p.333
σobs p.318 p.324 p.330 p.336 p.339
σV p.342
σX p.336 p.342
τ p.327 p.333 p.339

Table 7.1 – Couples of inputs experimented: results are on the indicated page (hyperlink).
This table is a copy of C.3.
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Figure 7.1 – Graph of 2-by-2 experiments: vertices are input parameters and edges exist
between inputs involved in a common 2-by-2 experiment. The annotated numbers are the
degree of the vertices.

Input Min Max Nominal value Unit
C0 0.3 2.5 2.1 none
C1 0 2.5 0.9 none
` 3 100 10 m
N 400 2500 700 none
σadd 0.1 2.1 0.5 m·s−1

σobs 0.1 2.1 0.5 m·s−1

σV 0 1.1 0.1 m·s−1

σX 0 11.1 1.0 m
τ 5 30 10 min

Table 7.2 – Range of variation and nominal value for each input.

7.1.2 Link with global sensitivity analysis

For global sensitivity analysis, the computer code is seen as a function of all the parameters.
The Hoeffding decomposition of this function allows to attribute the variance on the output
to a group of parameters.

Y = f(X) =
∑
u∈I

fu(Xu) (7.1)

For a 2-by-2 experiment, we look at the same function but with only two parameters
moving. The others are fixed to their nominal value. The 2 parameters varying are denoted
Xi and Xj . It is also possible to write the Hoeffding decomposition on this new model, which
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has only 3 terms :

Ỹ = f̃(Xi, Xj) = f̃i(Xi) + f̃j(Xj) + f̃i,j(Xi, Xj) (7.2)

The two models are linked by the fixation of the parameters Xi,j = {Xk, k ∈ [[1, p]], k 6=
i, j} to their nominal value xi,j .

L(Ỹ ) = L(Y |Xi,j = xi,j) (7.3)

Because the Hoeffding decomposition is unique, one can identify the terms :

f̃i(Xi) =
∑

u∈I,i∈u
fu(Xi, xu\i) (7.4)

f̃i,j(Xi, Xj) =
∑

u∈I,{i,j}∈u
fu(Xi, Xj , xu\{i,j}) (7.5)

But this relationship are not exploitable without additional assumptions. The main inter-
est of 2-by-2 experiments is to allow a visualization of the response surface and thus to infer
about the shape of the function f .
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7.2 Validation of the tuning strategy

The conclusions of the sensitivity analysis presented in the previous chapter sustain the pos-
sibility to reduce the system to only 3 informative outputs and 3 influential inputs. The
reduced system has two degrees of freedom: σadd (which is unknown in practice) and the
affordable time of execution Texe. It states a tuning strategy for the 3 main inputs which
ensures the reconstruction is then performing well. The tuning strategy consists in setting
σobs with the wind spectrum slope and then to set N by a trade-off between the affordable
time of execution Texe and the desired precision rV .

7.2.1 Setting σobs with wind spectrum slope

We have seen is the chapter 1 (REF +précise), that the wind spectum has a characteristic -5/3
slope in log-log scale (see figure 5.32 for an illustration). This output has been shown to be
affected by the inputs σadd and σobs, mainly. It is poorly affected by interactions so that it is
a useful output to tune the inputs. The input σadd is the error made by the instrument, which
is unknown in practice. Conversely, σobs is the guess of this error, and it is the parameter
used in the algorithm instead of σadd. We can expect the system to perform the best when
the guess σobs is equal to the true value σadd.

Figure 7.2 shows the result of the 2-by-2 experiment when σobs and σadd are the only input
moving. The displayed output is the wind spectrum slope b. One can see the clear influence
of both variable. The red plan in the middle of the figure stands for the theoretical -5/3 value.
The black line represents the equality of the two inputs. In the area where σobs < σadd (right
hand side of the figure, where the ground is red), the wind spectrum slope is higher than the
expected value. Indeed, the true observation noise (σadd) is higher than its guess (σobs) thus
the filter let some noise left in the estimation. Conversely, in the area where σobs > σadd (left
hand side of the figure, where the ground is blue), the wind spectrum slope is lower than
the expected value. There, the filter overestimates the amount of noise and removes to much
power in the highest frequencies. The sensitivity analysis and this response surface show the
wind spectrum slope is very sensitive to this setting. One can see that the response surface
seems to cross the -5/3 value when σobs and σadd are equal. This feeling is confirmed by a
look at the cross-sections in figures 7.3 and 7.4.

Figure 7.3 shows the evolution of the output b against σadd, for different values of σobs.
Each solid curve corresponds to a different value of σobs (precised in the key). The -5/3 value
is the horizontal dashed line. The vertical dashed lines are where σadd is equal to one of the
value of σobs displayed. One can see that the solid lines cross the horizontal dashed line when
σobs = σadd (it is less clear for small values of σobs). The observation is the same for the figure
7.4 which displays the evolution of the output b against σobs, for different values of σadd. It
sustains that the output b has the expected value when σobs = σadd.

It also confirms the tuning strategy. For a given instrument, σadd is fixed. The parameter
σobs should be set the same value. The strategy consists in drawing the output b against σobs
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and to pick the value of σobs which gives the wind spectrum slope the closest to -5/3.

Figure 7.2 – Evolution of b when only σadd and σobs vary. The sampling grid has 20 values
of σobs and 20 values of σobs (400 points in total). The red plan is at the level b = −5/3
(theoretical expected value).
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Figure 7.3 – Evolution of b when σadd vary,
for different values of σobs. Horizontal dot-
ted line is b = −5/3. Vertical dashed lines
signalize when σadd = σobs for each value of
σobs.

Figure 7.4 – Evolution of b when σobs vary,
for different values of σadd. Horizontal dot-
ted line is b = −5/3. Vertical dashed lines
signalize when σadd = σobs for each value of
σadd.

7.2.2 Variations of the wind RMSE against the main inputs

Among the 5 outputs, the TKE RMSE and the number of null potential have been dismissed
because of their complex variations, unsuitable to a tuning strategy. The execution time
depends only on N and the wind spectrum slope is exploited to set σobs equal to σadd. The
wind RMSE is thus the only relevant score to assess the wind retrieval with reconstruction.
It has been shown that this score depends mostly on the first group of parameters: N , σadd
and σobs. Since it also have been shown that the influence of these inputs could be complex
because of interactions, the 2-by-2 experiments will be fully exploited here. Three 2-by-2
experiments are required to completely visualize the influence and the interactions of these
three main inputs. The figure 7.5 (respectively 7.6 ; 7.7) shows the variations of the wind
RMSE when only N and σadd (repectively N and σobs ; σadd and σobs) are moving.

In the figure 7.5, one can see the wind RMSE steadily decreases with N , whatever the
value of σadd. The theorem 5.1 predicts a 1/

√
N decrease of rV , which look confirmed here,

independently from σadd. The effect of σadd is to increase the RMSE. But one can see that this
increase is not linear. As long as σadd < 0.5, the RMSE does not increase and then increases
rapidly (the increasing speed depends on N). The 0.5 threshold is interesting because it is
the nominal value of σobs.

In the figure 7.6, one can see the effect of N is the same as in figure 7.5. The effect of
σobs is interesting. It shows a minimum around the value σobs = 0.5 which corresponds to
the nominal value of σadd. It sustains that the reconstruction is performing the best when
σobs = σadd.

Figure 7.7 crosses the effects of σobs and σadd already observed. Two areas are to consider:
when σobs < σadd and σobs > σadd. As long as σadd < σobs, there is no effect of σadd on
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Figure 7.5 – Evolution of rV when only N and σadd vary.

the RMSE and σobs makes it increase linearly. When σobs > σadd, the evolution of the wind
RMSE is much more complex. It fastly increases with σadd. The effect of σobs is in two stages:
for very small σobs the RMSE increases and reaches a maximum and then decreases up to
the point where σobs = σadd (after what it increases again, as mentioned previously). In any
case, there is a low on the line σobs = σadd.

The best choice for σobs is thus to be equal to σadd. We have seen this can be obtained
quite safely by the tuning with the wind spectrum slope. Once this setting has been made, one
can see the evolution of wind RMSE against σadd and N in figure 7.8. The RMSE increases
linearly with the observation noise and decreases as 1/

√
N , as the regressions in figure 7.9

show. Hence the wind RMSE can be approached by the relation (7.6) when the input σobs is
correctly set.

rV = K
σadd√
N

(7.6)

The constant K is estimated by ordinary least squares on the points of the surface 7.8 The
resulting value is K = 2.33. One can see in the figure 7.9 that the wind RMSE is always
lower that the input σadd, even for very low N . For example, if one has a lidar making a
error σadd = 1.19 m·s−1 (middle line in figure 7.9), the error on the wind at the output of
the filter is below 0.2 m·s−1, even with only 500 particles. It reduces the noise about 83% for
the lowest N tested and rate raises up to 93% with N = 2500. It shows the efficiency of the
wind retrieval with the reconstruction. Even for an instrument quite noisy, the filter lessens
strongly the inaccuracy on the wind.
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Figure 7.6 – Evolution of rV when only N and σobs vary.

Figure 7.7 – Evolution of rV when only σadd and σobs vary.
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Figure 7.8 – Well set case: evolution of rV when only N and σobs vary with σobs = σadd.
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Figure 7.9 – Evolution of rV with N when σobs = σadd. Regressions (dashed lines) show the
observed decrease is close the square root, as predicted by the theory.
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7.2.3 Effect of N on the execution time

The number of particles is the only parameter to have an influence on the execution time
Texe. The 2-by-2 experiments confirm this claim (see the results for Texe in the appendix,
page 361). By regression, as shown in the figure 7.10, the rate of increase seems to be a power
law:

Texe = Na (7.7)

The parameter a is estimated by ordinary least squares is a = 1.75. According to this relation,
twice the number of particles multiply by 3.36 the execution time. The other regression
tested is exponential (Texe = 2N/a), but it seems less in agreement with the observations.
Nevertheless, according to the exponential relationship, the time of execution should double
each 515 particles. They are key figures to dimension numerical experiments.

Figure 7.10 – Evolution of Texe with N for different values of σobs. Regressions (dashed lines)
show the best fit is a power function.

7.2.4 Tuning strategy for the reconstruction

The best wind retrieval is thus obtained with the following three inputs values:

• σadd the smallest,

• σobs equal to σadd,

• N the highest.

Although σadd is fixed by the instrument, this result helps to assess which precision is afford-
able for a given instrument. Even for inaccurate instrument, the resulting error is much lower
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than the raw error. The number of particles is bounded by the affordable time of execution.
Examining these results, the following tuning strategy seems to be the most appropriate:

1. Set N to a low value, such that Texe is really small.

2. For σobs ranging around the a priori accuracy of the instrument, calculate the wind
spectrum slope b.

3. Set σobs to the value which gives b the closest to -5/3. σobs is then almost equal to σadd.

4. Set N to the maximum affordable value. The error on wind retrieval is now minimum,
estimated by K σobs√

N
with K = 2.33
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7.3 Other interesting results

7.3.1 On the bad construction of the score rk

After the sensitivity analysis, the output rk (TKE RMSE) have been shown to have very
complicated behaviour, including high order interactions. As a consequence, it cannot be
used to tune the output. We will see at the examination of the 2-by-2 experiments that the
interpretation of the score rk itself is also complex, which makes it an irrelevant score.

Figure 7.11 depicts the surface response when only ` and σadd vary. σadd is the most
influential input. Although its interaction with ` does not have a high Sobol index, one can
see in the figure 7.11 that they are clearly interacting. The effect of σadd depends on the value
of `. The shape of the response surface is complex and no clear interpretation can explain
it. When ` is large, the local average is no longer local and converges to a spatial average.
When ` is large, the RMSE rk reaches a minimum when σadd = 0.9. The value of σadd where
this minimum is reached increases when ` decreases. One of the unclear interpretations about
this could be that RMSE on TKE is the lowest when the instrument has a variance of error
comparable to the ambient turbulence. This could be checked by changing the reference wind
in the system, but it has not been done here. The effect of ` is due to the local average used
to compute the TKE. By using another TKE estimator, for example the STKE defined in the
section 1.4, one should retrie the same evolution as ` is maximum.

Figure 7.11 – Evolution of rk when only ` and σadd vary.

Figure 7.12 is the response surface when only N and τ vary. Both have quite small Sobol
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indices, but τ showed an asymmetric influence on the cobweb plot 6.25. In the figure 7.12
one can see that τ does have an influence, while N has no influence at all. The non influence
of N is retrieved in the others 2-by-2 experiments in the appendix. The weird effect of τ is
confirmed as well by others 2-by-2 experiments in the appendix. This effect is due to the
construction of the score rk. The time average operator introduce some threshold effect that
is visible here. This effect makes difficult the interpretation of the score.

Figure 7.12 – Evolution of rk when only N and τ vary.

Finally, the figure 7.13 shows the response surface rk against σadd and σobs. rk is minimum
when σadd = 1.6 and σobs is not too small. When σobs is not too small, this minimum disap-
pears. There is no low on the line σobs = σadd, as for the wind RMSE. It tells that knowing
perfectly the instrument error does not help to improve rk. Whatever, is the guess of the
instrument error σobs, if the real σadd is not at the good value (related to ` as seen in 7.11
and probably related to the ambient turbulence), the TKE retrieval will not work. This is a
very bad issue for this score because it depends on arbitrary parameters (`) or uncontrollable
(ambient turbulence) or unknown (if the previous reasoning are wrong). In any case, this
output is hardly useful in practice.

The 2-by-2 experiments give more insight about the variations of rk. But they are complex
and there is no satisfying interpretations for them. Unverified interpretations could be that
the score rk depends on the balance between the instrument error σadd and the ambient
turbulence, and not on the balance between σadd and its guess σobs. Hence, the conclusion
of this analysis is that the score rk is not well constructed and is not very informative about
the system.
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Figure 7.13 – Evolution of rk when only σadd and σobs vary.

7.3.2 Influence of C0 and C1

The inputs C0 and C1 have been put in the second group of influence in the last chapter.
They have a notable influence but the interaction share was the argument to put them out of
the first group. Another argument was that turbulence modelling provide estimation of them.
In particular, Pope (1994) proposes the relationship C1 = 1

2 + 3
4C0 with the value C0 = 2.1.

Nevertheless, the 2-by-2 experiments can give more insight about their influence and check if
such relationship is visible in the outputs.

On the output b (wind spectrum slope) they were mentioned to be influential. Figure 7.14
shows the evolution of b when only C0 and C1 vary. One can see the response surface crosses
the -5/3 value around the thick line, which has for equation C1 = 1

2C0. The dashed line has
the equation suggested by Pope C1 = 1

2 + 3
4C0. The black dot is where the nominal values

have been chosen. The equation suggested by Pope looks wrong in this figure because it has
been designed for 3D flows while this one is only 1D. The nominal values are close to optimal
line.

On the output NG0 (number of null potential), C0 and C1 were spot as influential (re-
spectively second and third total Sobol index in figure 6.3). In the figure 7.15 is displayed
the evolution of NG0 against C0 and C1. Although the sensitivity analysis let think that NG0
has complex variations when C0 and C1 vary (because of interactions), the response surface is
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Figure 7.14 – Evolution of wind spectrum slope when only C0 and C1 vary. The black dotted
line are the points where C1 = 1

2C0. The dashed line has for equation C1 = 1
2 + 3

4C0. The
dot denote the nominal values.

very smooth. One can see that a range of values are admissible (they give no null potential)
and another is not. The same lines as in the previous figures are plotted (C1 = 1

2 + 3
4C0,

Pope’s result, is the dashed line ; C1 = 1
2C0, the convenient equation for the wind spectrum,

is solid dotted). The line that was admissible for the wind spectrum (C1 = 1
2C0, solid dotted)

is admissible here too. The line given by Pope for 3D flows (C1 = 1
2 + 3

4C0, dashed) is not
very convenient according to this score neither. The nominal values (C0 = 2.1, C1 = 0.9) are
in the admissible area too, close to the dotted line.

On the output rV (wind RMSE), they are also in good position in figure 6.21. The figure
7.16 displays the evolution of wind RMSE when only C0 and C1 vary. The same lines as in
the two previous figures are plotted. As for the two previous figures, the line C1 = 1

2C0 is
admissible (it gives low RMSE) while the line C1 = 1

2 + 3
4C0 is not. The results are thus

consistent among the 3 exploitable outputs. One more thing about the figure 7.16: it shows
the extreme value C1 = 0 always gives the lowest RMSE, which is strange, because it suggests
the model is better without the fluctuation term.

On the output rk the inputs C0 and C1 have a contrary effect, as shows the figure 7.17.
The line C1 = 1

2C0 gives the highest TKE RMSE, while the line C1 = 1
2 + 3

4C0 gives lower
values (still not minimum). The influence of C0 and C1 on rk is antagonist to the influence
on rV . But the sensitivity analysis raised many questions on the reliability of the score rk. It
has been shown to be influenced in a complex way. Moreover, the range of the variations due
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Figure 7.15 – Evolution of NG0 when only C0 and C1 vary. The black dotted line are the
points where C1 = 1

2C0. The dashed line has for equation C1 = 1
2 + 3

4C0. The bullet denotes
the nominal values.

to C0 and C1 is not as broad as other inputs can give. Hence, to set C0 and C1, the choice is
made to choose the effect on rV rather than the effect on rk.

Further examination of the influence of parameters C0 and C1 with 2-by-2 experiments
confirm the influence that was suspected with Sobol indices. The response surfaces are
smoother than what was expected according the interactions in which they are involved.
The wind spectrum gives the sharpest criterion to choose C0 and C1. By visual examination,
the relation C1 = 1

2C0 should be fulfilled to have a -5/3 spectrum slope. This criterion is valid
for the output NG0 and rV too. However, it appears to be the worst choice for the output
rk. But this output suffers from many weakness in its construction. Hence, the effect of rk
is ignored. Thus, the 2-by-2 experiment concludes that C0 and C1 must fulfil the relation
C1 = 1

2C0 to be well set. The nominal point (C0 = 2.1, C1 = 0.9) does not fulfil exactly, it
should be improved easily.
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Figure 7.16 – Evolution of wind RMSE when only C0 and C1 vary. The black dotted line
are the points where C1 = 1

2C0. The dashed line has for equation C1 = 1
2 + 3

4C0. The bullet
denotes the nominal values.
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Figure 7.17 – Evolution of TKE RMSE when only C0 and C1 vary. The black dotted line
are the points where C1 = 1

2C0. The dashed line has for equation C1 = 1
2 + 3

4C0. The bullet
denotes the nominal values.
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7.3.3 Retrieval of known variations of NG0

Figure 7.18 – Evolution of NG0 when only N and σadd vary.

The influence of N , although not visible in the Sobol indices (both in figures 6.3 and 6.41),
is quite clear in figures 7.18 and 7.19. It shows a regular decrease of NG0 as N is rising. We
retrieve the behaviour predicted by the theorem 5.2 which states an exponential decrease of
NG0 with N .

The influence of σadd and σobs is described by the theorem 5.3. This theorem gives an
upper bound for the average number of null potential. This upper bound is displayed in figure
7.21. One can see this bound is very low in a large corner of the figure. The actual number
of null potential, obtained when only σadd and σobs vary, is displayed in figure 7.20. One can
see the same large corner of very low values. This corner is delimited by the black line.
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Figure 7.19 – Evolution of NG0 with N . Regressions show an exponential decrease.

Figure 7.20 – Evolution of NG0 when only
σadd and σobs vary.

Figure 7.21 – Theoretical average for theNG0
output against σadd and σobs.
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7.4 Conclusion

So-called 2-by-2 experiments are the computation of the surface response when only 2 inputs
vary and the others are kept to their nominal values. It allows visualizations of the surface
response which are not possible in higher dimensions and thus help to find the shape of
the response function f . Such visualizations have been used to confirm the tuning strategy
coming out of the sensitivity analysis. Only few 2-by-2 experiments are necessary, thanks to
the ranking of importance made by the sensitivity analysis. The surface response of wind
spectrum slope and wind RMSE have been commented and confirm the following tuning
strategy:

1. Set N to a low value, such that Texe is really small.

2. For σobs ranging around the a priori accuracy of the instrument, calculate the wind
spectrum slope b.

3. Set σobs to the value which gives b the closest to -5/3. σobs is then almost equal to σadd.

4. Set N to the maximum affordable value. The error on wind retrieval is now minimum,
estimated by K σobs√

N
with K = 2.33.

Beside, some results of the 2-by-2 experiments have been used to check remarkable points.
From these additional examinations, it comes out that

• The score rk has been shown to be not very well constructed because it is not very
informative on the system.

• The inputs C0 and C1 have been left apart from the tuning strategy, they are explored
with 2-by-2 experiments. It yields that the setting fulfilling the relation C1 = 1

2C0 gives
the best results.

• The influence of N on NG0 is in agreement with the theorem 5.2, although not visible
in the Sobol indices.

The full results of 2-by-2 experiments have not been commented all, but they are let available
to the curious reader in the appendix C, page 301.
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Penalised regression to estimate the
Sobol indices
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8.1 Sobol indices estimated by regression

8.1.1 Motivation

In the chapter 4, several estimators for Sobol indices have been presented. They are all based
on a different way to estimate the average operator in the Sobol index. For example, Sobol
(2001) compares 2 estimators (though denoted λ and µ in the paper, here the notations of
the previous chapter are kept):

D̂u
MC1 = 1

N

N∑
i=1

f(Xi)f(Ziu, Xi
ū)−

(
1
N

N∑
i=1

f(Xi)
)2

(8.1)
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D̂u
MC2 = 1

N

N∑
i=1

(
f(Xi)− f(Ziu, Xi

ū)
)2

(8.2)

He shows that D̂u
MC2 has a smaller variance to estimate total Sobol indices, while D̂u

MC1

has a smaller variance to estimate main effect Sobol indices. Moreover, D̂u
MC2 is always

positive, which avoid the estimation to be negative when indices are small. Saltelli et al.
(2010) makes a broader comparison focused on the estimation of first order Sobol indices,
and proposes another Monte Carlo estimator:

D̂u
MC3 = 1

N

N∑
i=1

f(Xi)
(
f(Zi)− f(Ziu, Xi

ū)
)

(8.3)

Owen (2013) also makes a comparison of several estimation strategies and proposes a new
estimator with the concern of improving the estimation of small Sobol indices.

Among all these estimators, the estimation method of V (E [Y |Xu]) is modified to improve
its efficiency (smaller variance, more efficient calculation) or to retrieve valuable properties
(positivity, asymptotic normality). In this section, we present another type of estimation,
based on a linear regression. When sensitivity analysis comes to the user, a complete set
of Sobol indices is not always informative. The interpretation of the highlighted sensitivity
is the final result of the sensitivity analysis. Only few coefficients are relevant to describe
the contribution of variance. Poorly influential groups are not taken into account in the
interpretation of the Sobol indices, even though their Sobol index is not exactly zero. Using
a linear regression opens to all feature selection techniques and makes the final result easier
to interpret. It also gives an alternative way to get estimators with good properties. In
addition, the optimisation formulation of regression takes profit of many efficient off-the-
shelves algorithms to make the minimization. Three estimators are presented and compared:

• The least squares estimator : Ŝu
ls

• The Lasso estimator : Ŝu
l1

• The best subset estimator : Ŝu
l0

First, the Sobol index estimation with regression is stated in a general way. Then, the prop-
erties and the relationship among the three considered estimators are reviewed. A strategy
to set the penalty is also given. Next, a small scale numerical experiment is carried out on
the case of turbulent medium reconstruction.

8.1.2 Linear model statement

The notation will be the same as in the chapter 4:
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• [[1, p]] = {1, . . . , p}

• I is the collection of all subset of [[1, p]] (thus of cardinal 2p).

• u is an element of I.

• | · | the cardinal of the set "·". For example, |u| is the number of indices in u ; and |I|
is the number of groups of indices in I (|I| = 2p).

• I ′ ⊂ I is the number of subsets considered. d = |I ′| 6 2p is its cardinal. For example,
if one is interested in first and second order Sobol indices only, one will have I ′ =
[[1, p]] ∪ {(i, j) ∈ [[1, p]]2}.

• For all u ∈ I, it is denoted ū = [[1, p]] \ u = {i ∈ [[1, p]], i /∈ u}

• X = (X1, ..., Xp) is the vector of random inputs (inputs are assumed independent).

• Z = (Z1, ..., Zp) is an independent copy of X.

• Y = f(X) = (X1, ..., Xp) is the output (also random).

• Xu = (Xi)i∈u is the vector of random inputs in u.

• Zu = (Zi)i∈u is an independent copy of Xu.

• Yu = f(Zu, Xū) is the output when the inputs in u are taken from another independent
realisation.

The aim is to estimate Su = cov(Y,Yu)
V(Y ) . It is the coefficient of the slope of the linear

regression between Y and Yu:

Lemme 8.1. For any set u of indices (u ∈ I ′), when

(au, bu) = argmin
(a,b)

{
E
[
(Y − aYu − b)2

]
+ E

[
(Yu − aY − b)2

]}
(8.4)

then
au = Su

Proof is in the appendix B.3.1.

The lemma 8.1 shows the best coefficient to predict the total variance from the predictor
Yu is the Sobol index Su. The coefficient au in the linear model of the lemma is equal to the
Sobol index even if E [Y ] 6= 0. The bu coefficient is not interesting to interpret the variance.
Hence, in the following, we will suppose that the output Y is centred: E [Y ] = 0.
The variance of the output can be explained with the linear model (8.5).

Y = auYu + εu (8.5)
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The statistical model (8.5) answers the following question: if the output Y has to be explained
with Yu (the same code with the input parametersXu frozen), how much variance is it possible
to explain? The best approximation of Y as a function of Yu is E [Y |Yu] (it can be seen as the
projection of Y onto Yu). The assumption stated by the linear model is that E [Y |Yu] = auYu.
As a consequence, the error ε of such model is a centred and the coefficient au is chosen to
minimize its variance. The variance of εu when it is minimum is denoted σ2

0u.

The statistical model (8.5) can be used to estimate only the Sobol index Su. The aim is to
get all Sobol indices at once. The vector of all slopes is denoted a = (au,u ∈ I ′). The vector
of all Sobol indices is denoted S = (Su,u ∈ I ′). These vectors are of dimension d = |I ′|.
Finally, the minimization problem (8.4) is changed into (8.6).

Sls = argmin
a

∑
u∈I′

E
[
(Y − auYu)2

]
+ E

[
(Yu − auY )2

] (8.6)

The minimization of (8.6) benefits then from the advances in linear regression. In partic-
ular, we will focus on two penalties to select the most relevant coefficients: the L1 penalty
(problem 8.7, Lasso method) and the L0 penalty (problem 8.8, best subset method).

Sl1 = argmin
a

∑
u∈I′

E
[
(Y − auYu)2

]
+ E

[
(Yu − auY )2

]
+ λ‖a‖1

 (8.7)

with the L1 norm ‖a‖1 =
∑

u∈I′ |au|.

Sl0 = argmin
a

∑
u∈I′

E
[
(Y − auYu)2

]
+ E

[
(Yu − auY )2

]
+ λ‖a‖0

 (8.8)

with the L0 norm ‖a‖0 =
∑

u∈I′ 1au 6=0 = |{u, au 6= 0}|.

8.2 Properties and links among estimators

The theoretical Sobol indices from penalized regression have been defined: least squares (8.6),
Lasso (8.7), best subset (8.8). Now we focus on their estimation. The problem is to find an
estimation of the coefficients in the linear model (8.5) from the following data:

Y =


y1

...
yN

 Yu =


y1

u
...
yNu


for all u ∈ I ′. The samples Y and Yu are denoted the same way as the random variables Y
and Yu they are sampling.
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Moreover, the random variables Y and Yu are assumed centred: E [Y ] = E [Yu] = 0 which
has for consequence

∑N
i=1 y

i =
∑N
i=1 y

i
u = 0. Since the random variables Y and Yu follow the

same law, we have E
[
Y 2] = E

[
Y 2

u
]

= σ2 and so
∑N
i=1(yi)2 =

∑N
i=1(yiu)2 = σ̂2 ' σ2. The

variance of the noise in the linear model (8.5) is denoted σ2
0u = V (Y − auYu).

8.2.1 The least squares estimator

The coefficients of the linear model (8.5) can be estimated with ordinary least squares. The
problem to solve in theory (8.6). In estimation, it is (8.9):

Ŝls = argmin
a

∑
u∈I′
‖Y − auYu‖22 + ‖Yu − auY ‖22

 (8.9)

For any u ∈ I ′, the solution is given by (8.10):

Ŝlsu = (Y T
u Yu)−1Y T

u Y =
∑N
i=1 y

iyiu∑N
i=1(yiu)2

(8.10)

The least squares estimator is known to be the BLUE: Best Linear Unbiased Estimator. Its
bias is zero and its variance is minimum among all estimators of the form AY with A ∈ Rd×N
(Gauss-Markov theorem, (Saporta, 2006) section 17.2).

E
[
Ŝlsu

]
= Su (8.11)

V
(
Ŝlsu |Yu

)
= (Y T

u Yu)−1σ2
0 = σ2

0
σ2 (8.12)

Its expression is the same as the Monte Carlo estimator D̂u
MC1. Janon et al. (2014) already

pointed out the equality of such estimators (remark 1.3 of the paper) and they proved their
asymptotic normality (proposition 2.2 of the paper). Moreover, the asymptotic variance of the
estimator given by Janon (denoted σ2

MC1) and the variance given by Gauss-Markov theorem
(equation (8.12)) are the same. Indeed, when Y is centred, σ2

MC1 is written

σ2
MC1 = V (Y (Yu − SuY ))

V (Y )2 From Janon et al. (2014)

= V (Yu − SuY )
V (Y ) because E [Yu − SuY ] = E [Y ] = 0 and (Yu, Y ) = (Y, Yu)

= σ2
0
σ2

In conclusion, the least squares method gives the same estimator as crude Monte Carlo.
This estimator is unbiased but asymptotically Gaussian: if the samples Y and Yu are too
small or for small Sobol indices, the variance is high and negative estimations are possible.
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8.2.2 Lasso versus least square

The Lasso method (Least Absolute Shrinkage and Selection Operator) aims to solve a least
squares problem while pushing some coefficients to be exactly 0. It is thus a valuable tool
when the vector of coefficient is sparse (van de Geer, 2016). Having several coefficients equal
to zero makes the statistical model more informative and more easily interpreted: predictors
with a coefficient to 0 are dismissed. The Lasso method was first introduced by Tibshirani
(1996). The principle is to solve the least square problem with a L1-penalty in the function
to minimize.

The use of a L1-penalty is what make some coefficients to be exactly zero. Indeed, the
admissible area has a very different shape with the L1 norm and the L2 norm. This is visible in
the figure 8.1: an illustration with p = 2 is presented. On the right hand side, the admissible
area for the L2 norm is a circle. On the left hand side, the admissible area for the L1 norm is a
square with angle on the axis. The solution of the unconstrained problem (8.6) is denoted β̂LS
in the figure 8.1 and the lines of equal cost are drawn in red. The solution of the constrained
problem is the point in the admissible area the closest to β̂LS according to the cost lines in
red. For the L2 norm (right panel), the solution is on a circle. Both coefficients are likely to
be non-zero. For the L1 norm (left panel), the solution is likely on one of the corner of the
square. On any corner, one the coefficient will be exactly zero.

Figure 8.1 – Illustration of admissible area with L1 and L2 norms. The extreme points are
located on an axis for the L1 norm, thus one of the coefficient is null.
Credit: Par LaBaguette — Travail personnel, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=48816401

The Lasso is written only for the Sobol indices estimation problem. The problem to solve
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is (8.13) and the solution is given by the proposition (8.1).

Ŝl1 = argmin
a

∑
u∈I′
‖Y − auYu‖22 + ‖Yu − auY ‖22 + λ1‖a‖1

 (8.13)

Proposition 8.1. For any u ∈ I ′, the Lasso and least squares estimators are related according
to the following formula:

Ŝl1u = max
(
Ŝlsu − ε1, 0

)
with ε1 = λ1

2σ2 .

Proof is in the appendix B.3.2, page 296.

The Lasso method gives an estimator that has a direct relationship with the least squares
estimator. To get the Lasso estimator, the least square estimator is shrunk of ε1 = λ1/(2σ2).
When the least squares estimator is smaller that the shrunk, the Lasso estimator is exactly
zero.

From a Bayesian point of view, the penalty is equivalent to give a prior distribution
to the coefficients a. The L1-penalty imposes an absolute exponential prior distribution:
∀a ∈ a, P (a) ∝ exp(−λ1|a|). Maximizing the likelihood gives the least squares estimator.
Maximizing the posterior probability with an absolute exponential prior gives the Lasso esti-
mator.

The hard part to take profit of the Lasso is to correctly set the penalty λ1. When λ1 → 0,
the estimator tends to the ordinary least squares estimator and there is no benefit to use the
Lasso. When λ1 → +∞, the penalty unrealistically shrinks the coefficients to estimate. Good
predictors will be dismissed, leading to too simple models.

8.2.3 Best subset versus least square

The so-called best subset method (mentioned in (Tibshirani, 1996; Breiman, 1995; Lin et al.,
2010)) adds a L0 penalty to the least square problem (equation (8.8)):

Ŝl0 = argmin
a

∑
u∈I′
‖Y − auYu‖22 + ‖Yu − auY ‖22 + λ0‖a‖0


with the L0 norm ‖a‖0 = |{i, ai 6= 0}| denoting the number of non-zero components in a.
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Proposition 8.2. For any u ∈ I ′, the best subset and least squares estimators are related
according to the following formula:

Ŝl0u = Ŝlsu 1
Ŝlsu >ε0

with ε0 =
√

λ0
σ2 .

Proof is in the appendix B.3.3, page 298.

The best subset estimator gives also an estimator directly linked with the least square
estimator. When the least square estimator is smaller than the threshold ε0 =

√
λ0/σ, the

best subset estimator is exactly zero. Otherwise, least square and best subset estimators
are equal. The shrinkage is not systematic, conversely to the Lasso. As for the Lasso, the
difficulty is to correctly choose the penalty λ0.

The best subset estimator is optimal in terms of information loss. Indeed, it minimizes
the Akaike information criterion. The Akaike information criterion (AIC) is a metric of the
information loss due to the model (original publication in 1973, republished in the collection
(Akaike, 1998)). The model Y = auYu + εu is imperfect and the AIC quantifies the benefit
of adding a new predictor. It is defined by

AIC = 2k − 2 log(L(a))

where k is the number of coefficients to estimate and L is the likelihood function. In our case,
k is the number of non-zero Sobol indices and the likelihood function is given by

log(L(a)) = log(P (Y |a)) ∝
∑
u∈I
‖Y − auYu‖22

Hence, the AIC for our problem is exactly the function of a to minimize in the best subset
problem (8.8).

Unfortunately, the minimization with a L0 penalty is a NP-hard problem (Natarajan,
1995). As a consequence, only greedy algorithms can perform the minimisation of (8.8).
For example, in (Tibshirani, 1996), they are estimated using the so-called leaps and bounds
procedure (Furnival and Wilson, 1974).

8.2.4 Lasso versus best subset

Lasso and best subset estimators are both related to the least squares estimator. Transitively,
they are related to each other. The property 8.1 tells the Lasso is soft threshold of the least
square estimator, while property 8.2 tells the best subset is a hard threshold of the least
square estimator. The threshold of Lasso is said soft because it is continuous, while the hard
threshold is not. Shapes of both threshold functions are displayed in figures (8.2) and (8.3).
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Figure 8.2 – Soft threshold: link between the
Lasso estimator and the least square estima-
tor.

Figure 8.3 – Hard threshold: link between
the best subset estimator and the least
square estimator.

To have the same threshold ε = ε1 = ε0, we need to have the following relation between
the penalty:

λ1 = 2σ
√
λ0 (8.14)

In this case, the relationship between Ŝl0u and Ŝl1u is easy to write and valid everywhere but
at the discontinuity (when Ŝlsu = ε).

Ŝl0u = Ŝlsu

Ŝlsu − ε
Ŝl1u (8.15)

When the thresholds are different, one need to distinguish the case ε1 < ε0 and ε1 > ε0 and
then the sub-cases Ŝlsu < min(ε1, ε0), Ŝlsu ∈]ε1, ε0[ and Ŝlsu > max(ε1, ε0). The final result
does not feed the comment. One can see that Ŝl0u → Ŝl1u either when ε → 0 (both converge
toward Ŝlsu when the penalty decreases) either when Ŝlsu → +∞. It highlights that the use of
L1 or L0 penalty is only relevant for small Sobol indices. For large Sobol indices, Ŝlsu has the
advantage to be unbiased.

Even with an expression of Ŝl0u and Ŝl1u as a function of Ŝlsu , for which the asymptotic
behaviour is known, the asymptotic law of the penalized estimators are not straightforward.
The Delta method does not apply because neither soft nor hard threshold functions are
differentiable.

Lin et al. (2010, 2008) argue in favour of the L0 penalty. They compare L1 and L0 penalties
according to the predictive risk function R(β, β̂) = E

[
‖Xβ −Xβ̂‖22

]
and show that the risk

ratio of L0 over L1 is bounded while the risk ratio of L1 over L0 is not. The final estimate
of L0 is better, but the algorithm to get it are not efficient. Indeed, Natarajan (1995) proved
that the L0-penalized least squares is a NP-hard problem. Hence, even if the L0 estimate is
better, more efficient algorithms exist for the L1 estimate.
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8.3 Choice of penalty by cross-validation

8.3.1 General principle of cross-validation

Given a linear model Y = Xβ + ε, one wants to estimate β and the uncertainty on the
estimation. The principle of cross-validation is to split the sample X in two part: a part
dedicated to the estimation of the coefficient in the regression, another part dedicated to the
prediction of the model with the estimated sample. On the part dedicated to the prediction,
one has both the reference value (given in the sample) and the predicted value. Hence, one
can have a score of error on the model.

The sample (Y,X) where Y ∈ RN and X ∈ RN×d is divided into one sample (YA, A) used
for the estimation of the coefficient (the training sample), and a sample (YB, B) used for the
prediction and error estimation (the testing sample). We denote NA the size of the learning
sample.

The training phase provides the estimated coefficients β̂ in the linear model Y = βX + ε.
The regression (with or without penalty) is performed on the sample (YA, A). For instance,
for the ordinary least squares, we have the formula

β̂ = (ATA)−1ATYA

Using this estimated coefficient, the output is predicted with the predictors of the second
sample. The comparison with the observed output provides an estimation of the uncertainty
of prediction:

ε ' YB −Bβ̂

In particular, one can check the bias, variance and mean squared error. In our case, we are
interested in the uncertainty of estimation. The uncertainty of estimation has to be derived
from the uncertainty of prediction.
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8.3.2 Uncertainty of prediction and uncertainty of estimation

The uncertainty on prediction quantifies the error made by the model when it is applied
on new data. The uncertainty on estimation quantifies the error made in the estimation by
comparing to a new dataset. By splitting the sample into a training sample and a testing
sample, one can access the uncertainty of prediction. But the uncertainty of estimation is not
directly accessible and has to be derived from the uncertainty of prediction. If we consider a
linear model Y = Xβ+ ε, with Y ∈ R, X ∈ Rd, β ∈ Rd and we assume we have an estimation
β̂ of the coefficient which is independent of X.

The uncertainty of the prediction Ŷ = Xβ̂ of the variable Y is described by its bias,
variance, and mean-squared error (MSE).

BiY = E
[
Ŷ − Y

]
(8.16)

VarY = V
(
Ŷ
)

= E
[
(Ŷ − E

[
Ŷ
]
)2
]

(8.17)

MSEY = E
[
(Ŷ − Y )2

]
(8.18)

These statistics describe the uncertainty of prediction. But for this application, we are
more interested on the error of estimation: bias, variance and MSE for the estimated coeffi-
cients β.

Biβ = E
[
β̂
]
− β (8.19)

Varβ = V
(
β̂
)

= E
[
(β̂ − E

[
β̂
]
)(β̂ − E

[
β̂
]
)T
]

(8.20)

MSEβ = E
[
(β̂ − β)T (β̂ − β)

]
(8.21)

Note that they all are of different dimensions: Biβ ∈ Rd, Varβ ∈ Rd×d and MSEβ ∈ R.
Although, they are linked by the following relation:

MSEβ = BiTβBiβ + tr(Varβ) (8.22)

where tr(·) is the trace operator.

The uncertainty of prediction and estimation are linked with the following relations when
β̂ is independent from X:

BiY = E [X] Biβ (8.23)

VarY = E
[
XVarβXT

]
+ V

(
XE

[
β̂
])

(8.24)

MSEY = BiTβE
[
XTX

]
Biβ + E

[
tr(XVarβXT )

]
+ σ2

0 (8.25)

Proof is in the appendix B.3.4.

In the case of the Lasso method, the cross-validation is repeated for different values of
penalty. As the estimator given by the ordinary least squares is unbiased, the bias of esti-
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mation should decrease with the penalty. Conversely, a large penalty shrinks the coefficients
and thus reduces the variance of the estimator but its bias grows. In the middle, we expect
the mean squared error to reach a minimum.

lim
λ→0

Biβ(λ) = 0 and lim
λ→+∞

Varβ(λ) = 0

With the testing sample, one can estimate the bias, variance and mean squared error of
prediction (equations (8.16),(8.17),(8.18)). They can be linked to the same statistics for es-
timation (equations (8.19),(8.20),(8.21)) through the formulae (8.23), (8.24) and (8.25). The
penalty is then chosen to minimise the error of prediction MSEY (λ). When this minimum
is reached, the chosen penalty makes a good comprise between bias and variance of estimation.

8.3.3 Application to Sobol indices estimation

For our particular problem, the linear model is not of the form Y = Xβ + ε. Instead, we
have d linear models of the form Y = auYu + εu. There is only one predictor which verifies
E [Yu] = 0 and E

[
Y 2

u
]

= σ2, for any u. The error εu has no reason to be the same for each
model: E [εu] = 0 and E

[
ε2u
]

= σ2
0u. Applying the formulae (8.23), (8.24) and (8.25) we have:

BiuY =
=0︷ ︸︸ ︷

E [Yu]Biua = 0 (8.26)

Varu
Y = σ2(Varu

a + E [âu]2) (8.27)

MSEu
Y = σ2(Biua )2 + σ2Varu

a + σ2
0u = σ2MSEu

a + σ2
0u(1− σ2) (8.28)

In practice, the estimators of bias, variance and mean squared error of prediction are
accessible through the formulae:

B̂iuY = 1
N

N∑
i=1

(yiuâu − yi) (8.29)

V̂aru
Y = 1

N − 1

N∑
i=1

(
yiuâu −

1
N

N∑
i=1

yiuâu

)2

(8.30)

M̂SEu
Y = 1

N

N∑
i=1

(yi − yiuâu)2 (8.31)

On the two last series of equation, one can see that the estimator for the bias is useless.
Indeed, despite the link (8.23) between bias of prediction and bias of estimation, despite the
fact that Bia(λ) is expected to increase with λ, the estimator (8.29) cannot be used to retrieve
that trend because of the relation (8.26).
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For the variance and mean-squared error, we would rather have a score for all the coeffi-
cients, not one for each u. Applying the definition of the MSE for any vector of parameters
β (equation 8.21) to the case β = a and β = (auYu + εu,u ∈ I ′), the relevant global MSE is
the sum of MSE for each u.

MSEY =
∑
u∈I′

MSEu
Y and MSEa =

∑
u∈I′

MSEu
a

tr(VarY ) =
∑
u∈I′

Varu
Y and tr(Vara) =

∑
u∈I′

Varu
a

Finally,

tr(VarY ) = σ2

tr(Vara) +
∑
u∈I′

E [âu]2


MSEY = σ2MSEa + (1− σ2)
∑
u∈I′

σ2
0u

In the equation of variance, the terms E [âu]2 vary with penalty (they are linked to the bias
which is not accessible). The variations of tr(VarY ) against λ are thus not equal to the
variations of tr(Vara). In the equation of MSE, σ2 = V (Y ) is a constant, σ2

0u = V (εu) is the
minimum variance of the least squares problem. It is also a constant (it depends only on u).
The variations of MSEY are the same as MSEa. Hence, the error of estimation is minimum
when the error of prediction is minimum.

In conclusion, the penalty will be chosen to minimize the error of prediction. In the par-
ticular case of centred design, the bias of prediction is longer linked to the bias of estimation.
The variance of prediction rely on additional terms that are still to be estimated to complete
the link between prediction and estimation. As a consequence, only mean-squared error plot
will be used.

8.3.4 Results of numerical experiments

The three estimators presented in the last section will be experimented on the application
case of turbulence reconstruction. The sample of inputs X and Z are generated with latin
hypercubes. For both X and Z, 4000 values of each input are generated. The split between
samples for cross-validation have been made randomly, with a proportion of 65% for the
training sample (2400 values) and 35% for the test sample (1600 values). Once the sample
has been split, the random state of the splitting is saved in case the experiment is repeated
in the same conditions. The experiment have been carried out with the meta-model of the
output rV (the root-mean squared error on the wind) because it is easy to interpret. The algo-
rithm used to minimize the cost functions (least squares and Lasso) is the conjugated gradient.

The figures (8.4) and (8.5) show the evolution of the estimated mean-squared error M̂SEY
of the Lasso for different penalty values. On the left (figure 8.4) the Lasso estimate have
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calculated from the Monte-Carlo estimate, on which the soft-threshold function has been
applied, using the proposition 8.1. On the right (figure 8.5) the Lasso estimate have calculated
by the minimization of the cost function defined by (8.7) (L1 penalized least squares). One
can see a clear minimum on both. Although, the slope is much more regular when the soft
threshold is applied. Indeed, it avoids the weaknesses of the minimization: do not reach the
exact minimum but something close enough, get stuck at a local minimum... Overall, the
comparison of both figures corroborates the minimization is trustworthy. But in the objective
to apply another minimum finder to such curve, the soft threshold one is recommended.
Moreover, the soft threshold one is much faster to compute.

As a conclusion, to find the good penalty value by cross-validation, we recommend to
do first an ordinary least squares regression on the training sample, then to get the Lasso
estimate by soft thresholding for all the penalty values and eventually to compute the mean
squared error on the testing sample. This recommendation holds only for problems which
have a result similar to the proposition 8.1.

Figure 8.4 – Estimated mean squared error
against the penalty in Lasso estimation. Ob-
tained with soft thresholding of the Monte
Carlo estimate.

Figure 8.5 – Estimated mean squared error
against the penalty in Lasso estimation. Ob-
tained with the minimization of the cost func-
tion.

This methodology can be extended to the L0 penalty. The best subset estimator resulting
from L0 penalized regression has been shown to be accessible through a hard thresholding of
the least squares estimator (proposition 8.2). This was the only method of estimation tested
here since only greedy algorithm can solve the L0 penalized minimization. As a consequence,
the parameter to check will not be the penalty λ0 but the threshold ε0 =

√
λ0
σ2 . The Monte

Carlo estimate is calculated on the training sample. For each threshold value, the mean
squared error is estimated on the testing sample. It results the curve in figure 8.6.
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One can see the step-like shape of the curve: the threshold does not have influence until
it reaches the next coefficient value. As a consequence, the minimum is not unique. For this
example, it is reached for a threshold around 0.1, which a large value. It let only two non-zero
indices. It points out the method of selection is not perfect and might be too selective. In
(Fruth et al., 2011) the value of 0.02 is used to threshold second order Sobol indices (figure 2
in the 2011 version on HAL). This value will be used here as well.

Figure 8.6 – Estimated mean squared error against the threshold in best subset estimation.

The figure 8.7 shows the evolution of the coefficients with the penalty. On the x-axis is
the value of the penalty in logarithmic scale. On the y-axis is the value of the estimated
coefficients. One can see that for a penalty almost null, the coefficients are all non-zeros.
Actually they are equal to their ordinary least squares estimate. For a very large penalty, all
coefficients are null. When the penalty decreases, they raise one after another. The introduc-
tion of a new coefficient can sometimes influence the curve of another coefficient. This is the
sign of a correlation between them (as in (Hesterberg et al., 2008), figure 2). No such feature
is visible in the figure. This is not surprising since the inputs of the sensitivity analysis have
been simulated independently. Although it is good to be confirmed by this observation.

Four estimators have been tested: the straightforward Monte Carlo, the ordinary least
squares, the Lasso and the best subset. They are displayed in figure (8.8). As expected, the
least squares (blue) and the Monte Carlo (black dashed line) are two realisations of the same
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Figure 8.7 – Value of the coefficients estimated by Lasso regression against the penalty (in
log-scale). The coefficients are all at 0 for large penalty and raise in order of importance up
to their value as obtained with ordinary least square.

estimator. The Lasso (green) shrinks all the coefficients up to 0. It results that only the
main indices are kept non-zero and the negative estimation of small indices are filtered. The
best subset (yellow) also selects the major coefficients, but it does not shrink them. The hard
threshold was set to the value ε0 = 0.02.
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Figure 8.8 – Three estimators ensuing from regression (coloured bars) are compared to the
Monte Carlo estimator (black dashed line). One can see that the ordinary least square (blue)
gives the same estimation (more or less some randomness due to estimation). The best subset
is exactly equal to the Monte Carlo, excepted for indices smaller than the threshold, which
are 0. The Lasso estimator gives a shrunk estimation bounded to 0.

8.4 Conclusion

Sobol indices summarize the influence of a group of parameters with a real number in [0, 1].
But the number of groups grows exponentially with the number of parameters (if the code
has p parameters, there are 2p groups of parameters). In practice, only few of them are really
influencing the code. Moreover, the interpretation of the Sobol indices will focus only on the
main ones. That is to say, a good estimation of Sobol indices is not necessarily an unbiased
estimation.

Penalized regressions offer biased estimators with lower variance such that the total error
is lower. From the initial remark that Sobol indices can be seen as the estimated parameter
in a linear model, three regression types have been tested. The ordinary least squares give the
same estimate as with Monte Carlo. The L1 penalized least squares give the Lasso estimate.
The L0 penalized least squares give the best subset estimate. The Lasso shrinks all coefficients
and set the smallest ones to exactly zero. The best subset does not shrink the coefficients
but set the smallest ones to exactly zero. They are linked to the least squares estimate with
a soft threshold and a hard threshold, respectively.

To set the penalty objectively, a cross-validation has been carried out for each penalty
value in a given set. The penalty which gives the lowest mean squared error is chosen to
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perform the final estimation. The application of this methodology on a single example has
shown good results, but more experimentations are needed to assess if it can be repeated and
trusted.
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General conclusion

The present thesis analyses the sensitivity of the reconstruction method to filter wind measure-
ments. This is important to improve the ability of lidar to perform turbulence measurements
(in wind farms or in airport, for example). The presentation was divided in two parts: a first
part dedicated to the state of the art of the different fields used in the reconstruction method,
a second part dedicated to the applications and the results. This conclusion summarizes the
original contributions of this work.

Major contributions

Tuning strategy

The results of the sensitivity analysis presented at the chapter 6 underlined key inputs pa-
rameters and relevant output scores. The key parameters are the number of particles, N , the
true observation noise, σadd and the given observation noise, σobs. The relevant output are
the wind spectrum slope, b, the wind RMSE, rV and the execution time Texe. Additional
experiments of the chapter 7 show how the key inputs influence the relevant outputs. From
this knowledge, we highlight a tuning strategy to set the most influential inputs. The tuning
strategy is the following:

1. Set N to a low value, such that Texe is really small.

2. For σobs ranging around the a priori accuracy of the instrument, calculate the wind
spectrum slope b.

3. Set σobs to the value which gives b the closest to -5/3. σobs is then almost equal to σadd.

4. Set N to the maximum affordable value. The error on wind retrieval is now minimum,
estimated by K σobs√

N
with K = 2.33.

Thanks to the tuning strategy coming out of this work, the reconstruction method should
be easier to deploy on new dataset. The benefit of the tuning strategy could be assessed on
other dataset from BLLAST. Beyond, automatic application of the tuning strategy would
help making the reconstruction more autonomous.

Reconstruction system details and behaviour

The reconstruction method was described in previous publications (Baehr, 2008, 2010; Baehr
et al., 2011; Suzat et al., 2011; Rottner and Baehr, 2014; Rottner, 2015). Such publications
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were highlighting the originality of the method in comparison to existing methods and giving
theorems about convergence. Deeper details could not be published because of the patenting
process, which came out to pending in December, 2016 (Baehr et al., 2016). Publications are
now authorized and this thesis is probably the most complete. Another paper, Rottner and
Baehr (2017), was submitted in June 2017, but cannot be as detailed as this document. The
level of details given in the chapter 5 is an important result of this PhD.

In addition, the validation scores built for the sensitivity analysis have been studied and
some theoretical results about their behaviour are demonstrated. The theorem 5.2 links the
number of null potential to the number of particles. It is based on a result from Del Moral
(2004), itself coming from Azuma-Hoeffding’s inequality. The theorem 5.3 links the number of
null potential to the observation noise (true and given). This is an orginal result in agreement
with the numerical experiments of the chapter 7. However, the numerical experiment does
not test the theory. Dedicated experiments shall be carried out before claiming the theoretical
result is matched by the experiment.

Sobol indices estimation

The chapter 8 tests an innovative way of estimation of Sobol indices. The Sobol indices
expressed as a solution of a least squares problem was already known (Janon et al., 2014).
But it has never been combined with penalties, as it is done in optimization under constaints.
The idea is that only the few highest Sobol indices are useful in pratice. To make small
Sobol indices go to exactly zero, a penalty is added to the function to minimize in the least
square problem. The tested penalties are L1 (the sum of absolute value of Sobol indices) and
L0 (the number of non-zero Sobol indices). The L1 penalty shrinks all coefficients and set
the smallest ones to exactly zero. The L0 penalty does not shrink the coefficients but set
the smallest ones to exactly zero. To set the penalty objectively, a cross-validation has been
carried out for each penalty value in a given set. The penalty which gives the lowest mean
squared error is chosen to perform the final estimation. The application of this methodology
on a single example has shown good results, but more experimentations are needed to assess
if it can be repeated and trusted.

Improvements in the implementation

The need of many runs to perform a sensitivity analysis motived the recoding of the recon-
struction code from Scilab to Fortran 90. Indeed, Scilab is a high level interpreted language,
while Fortran is a low level compiled language. The coding with a low level language is much
harder than high level. Software engineering took a large part of the time in this PhD. It
was the opportunity to re-think the algorithms. The conditioning step of the reconstruction
especially, was improved (economy of one loop) The algorithm was presented in the chapter
5. Overall, the computing time was reduced by a factor 150. The 1D code used here processes
2 hours of data in 70 seconds (for 1400 particles). The previous code was processing it in
about 3 hours. This result must be tempered by the fact that the Scilab code performs 3D
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reconstruction.

Prospects

Influence of the meta-model

It is a legitimate to wonder to what extend the presented results and conclusions are dependent
from the choice of meta-model. Although a rigorous assessment (systematic cross-validation
with different kernel types for example) was not possible within the allocated time, the whole
sensitivity analysis was repeated with a Matérn 3/2 variogram instead of the Gaussian one.
The results, in figures 8.9 to 8.12, are presented in the same way that figures 6.37 and 6.38:
the tile has inputs in abscissa, outputs in ordinate and the Sobol indices of a given input for
a given output is depicted in shade of color. First order simple Sobol indices (direct influence
share) are in blue (figures 8.9 and 8.10). The interaction part (difference between total and
simple first order indices) is in green (figures 8.11 and 8.12). The only visible difference is
the line of the output NG0: the interaction share is much smaller with the Matèrn variogram
(as a consequence, direct effect is stronger). This difference is not clear to interpret and it
does not contest the conclusions of this work. Therefore, this experiment is agreeing that the
conclusions are not dependent from the choice of the meta-model.

Figure 8.9 – First order Sobol indices with
Gaussian variogram.

Figure 8.10 – First order Sobol indices with
Matérn 3/2 variogram.
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Figure 8.11 – Interaction part with Gaussian
variogram.

Figure 8.12 – Interaction part with Matérn
3/2 variogram.

Estimation with penalised regression

The results presented in this thesis about the estimation of Sobol indices with penalised
regression are only a demonstrative example. The method should be tested on a complete
real case example, and compared to other well proven estimation methods. Mathematical
properties (invariances, convergence...) of such estimators are still to be explored.

Sensitivity analysis feedback

The sensitivity analysis carried out here was the first ever done in the reconstruction. Strong
of this first experiment, we can do recommendations for a second study.

The scores can be discussed. Although the initial idea of the score RMSE on TKE was
worth to try, it appears to be not as informative as expected. The effects of the integration
time, τ , are compensated in Sobol indices estimation. At the chapter 1, it was told that
spatial and time variances cannot be compared for vertical velocity. The value of this score
is not interpretable, nor are its trends. Instead, an average value of LSKTE would have been
informative. The number of particles rejected at the selection is also a good indicator of
malfunctions in the reconstruction. It could be a good score.

As a first attempt, the stochastic nature of the code was not taken into account (the
argument is that N is always large enough to ensure convergence). In a second experiment,
this aspect should be included. Likewise, instead of estimating a multidimensional Sobol
index, Sobol indices have been estimated independently on each component. Although the
difference of variance (due to units) was an argument to justify the average Sobol indices used
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in the chapter 6, multidimensional Sobol index could be worth to be estimated the next time.

Reconstruction method

The present study was restricted to the 1-dimensional case, for two reasons: the recoding
in Fortran is time-consuming and the 1D code runs faster. Given that the target of this
thesis was to make the sensitivity analysis, the 1D code was enough. However, turbulence is
very different in 3D (see chapter 1 and the comparison between TKE estimators) and lidar
measurements are limited by the Cyclop’s dilemma (while they are not in 1D). Thus, the
extension to 3-dimensional case is a very interesting prospect, even if some major results (like
the tuning strategy) might hold.

Known limitations of the reconstruction method have been recalled in the chapter 5. One
of them is that it does not work in stable conditions. Further work on the Lagrangian model
must be done in order to get a suitable model. Given the differences of nature between
turbulent and stable cases, switching model techniques might be helpful to solve this issue.

The dataset used as a reference was taken in fair weather, well developed turbulence. A
prospect would be to make the same study with another reference. It could tell if the present
study is confirmed whatever the reference is. It is likely that the conclusion will be different
if the reference is taken in sable atmosphere. Although the Lagrangian model is not expected
to work in stable cases, the sensitivity analysis might points out what are the parameters to
change in order to adapt the model to such cases.
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Appendix A

Theoretical background

A.1 Probability

This section intends to homogenize the knowledge common to most of readers, including
those not practising probability on a daily basis. There exists already myriad of books on
probability where more details (such as demonstrations) and more examples can be found.
Some of them have been used to write this section, as Barbe and Ledoux (1998) (in French)
and Gardiner (2009); Øksendal (2013) (in English) in addition to many roaming lectures.

A.1.1 Elements of measure theory

Let E be a non-empty space in which belong the object to measure. For example, if one wants
to measure lengths, E will be the set of real numbers. The space E will be called the state
space. The set of all parts of E is denoted by P(E). Parts of the state space are accessible
for measure only if they are in a σ-algebra.

Definition A.1 (σ-algebra).

With words A σ-algebra is a subset of P(E) stable by complementarity and countable
union.

Formally E is a σ-algebra if it satisfies the 3 following statements:

• E ∈ E
• ∀A ∈ E , Ac ∈ E
• ∀n ∈ N, An ∈ E ,

⋃
n∈N

An ∈ E

In a set E, there are many σ-algebras. As an example, {∅, E} is a σ-algebra of E (it is
called the coarse σ-algebra). P(E) is a σ-algebra of E (it is called the discrete σ-algebra).
For any subset A ⊂ E, {∅, A,Ac, E} is a σ-algebra of E (it is called the σ-algebra generated
by A).
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A very common σ-algebra is the one corresponding to lengths, surfaces or volumes. On
R, it is the σ-algebra generated by the intervals, denoted by B(R). On a more general space
E, it is the σ-algebra generated by the open sets of E, denoted by B(E). Lengths, surfaces
or volumes are then given by the measure of the elements in the σ-algebra.

Definition A.2 (Measure).

With words A measure µ is an application associating to any measurable element a
positive real number, such that

• the measure of the empty set is zero.
• the measure of the union of disjoint sets is the sum of each set measure.

Formally

µ : E −→ [0,+∞]
A 7−→ µ(A)

and satisfies the 2 following statements:

• µ(∅) = 0

• ∀n ∈ N, An ∈ E such that ∀i 6= j, Ai ∩Aj = ∅, µ

⋃
n∈N

An

 =
∑
n∈N

µ(An)

Intuitively, what in this definition makes it a measure? First, the fact that it is a mapping
that associates to each measurable set a real number. The measure "summarizes" the set by
a real number (for example its size). Second, the additivity: the size of disjoint sets is the
addition of the size of all sets.

The measure defined on B(E) that correspond to lengths, surfaces and volumes is called
the Borel measure λ. When this measure is extended to null subsets1, it is called the Lebesgue
measure and denoted Λ. 2

Probability are measures on another space than the state space. Let space Ω be a space
endowed with a σ-algebra F . A measurable element of the probability space A ∈ F is a called
an event. The space Ω is called the universe.

1a set N is null for the measure λ if ∃A ∈ B, N ⊂ A and λ(A) = 0
2Non measurable elements exist only if one accepts the axiom of choice. But this axiom is controversial

because it yields to paradoxical results, such as Banach-Tarski theorem (well explained in this Youtube video).
In summary any subset of R, unless very exotic, is measurable.
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Definition A.3 (Probability).

With words A probability is a measure with maximum value 1.

Formally

P : (Ω,F) −→ [0, 1]
A ∈ F 7−→ P(A)

with P(Ω) = 1.

Hence, the probability for an event to occur is the "size" of the event, as measured by P.

A.1.2 Random variables

Measure theory is the starting point to study random variables. By default, random variables
are real valued, for the sake of simplicity (and because the differences are most of the time
an extension of the notations to complex or multi-dimensional case).

A.1.2.1 Definition

Definition A.4 (Random variable).

With words A random variable X is a measurable function from a probability space
(hidden) to a state space (accessible by measurement).

Formally

X : (Ω,F ,P) −→ (E, E)
ω 7−→ X(ω)

where X verifies
∀A ∈ E , X−1(A) ∈ F .

with X−1(A) = {ω ∈ Ω : X(ω) ∈ A}.

Given ω ∈ (Ω,F ,P), the value X(ω) is called a realization of X. The figure A.1 gives a
visual sight of the notation.

The probability space (Ω,F ,P) is considered as hidden. It is the source of randomness:
nothing is known about Ω but the σ-algebra F and the probability P exist. In a coin toss, for
example, Ω could be the R3 ×R3 space of the initial position and speed of coin... or it could
be R3 × R3 × R3 space of the initial position and speed of coin and wind speed... or even
more complex. Instead of trying to set what could be influencing the coin, we settle that it is
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Figure A.1 – Diagram to introduce random variables: the random variable X is a measurable
function from an unknown departure space Ω to a measurable arrival space E.

unknown, and the unknown part is the source of randomness. Informally, randomness is an
unknown variable.

A.1.2.2 Probability law

Given a random variable X (definition A.4), the departure space (Ω,F ,P) is equipped with
the measure P. The arrival space (E, E) is measurable. With this ingredients, one can define
a measure on the arrival space: the probability law of X.

Definition A.5 (Law of a random variable).

With words The law ηX of the random variable X is the pushforward image of the
probability P on the state space.

Formally
∀A ∈ E , ηX(A) = P

(
X−1(A)

)
with X−1(A) = {ω ∈ Ω, X(ω) ∈ A}.

To ensure the pre-image X−1(A) is measurable by P, the fact the X is a measurable
function is essential. As P is a probability, ηX arrival values are in [0, 1] :

ηX : E −→ [0, 1]
A 7−→ ηX(A) = P

(
X−1(A)

)
As a consequence, ηX is also a probability on (E, E):

ηX(E) = P (Ω) = 1 (A.1)
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A.1.2.3 Probability density function

Usually, in problems with Euclidian geometry, the state space (E, E) is equipped with the
Lebesgue measure Λ (the measure which correspond to length, areas and volumes, including
negligible elements). It is very informative to know how the probability law ηX of the random
variable X is different from the Lebesgue measure Λ. Both ηX and Λ are measures on
(E, E). Given a measurable element A ∈ E , we want to compare ηX(A) =

∫
x∈A dηX(x) and

Λ(A) =
∫
x∈A dΛ(x). In particular, is there a weight function fX (with which properties?)

such that ∫
x∈A

dηX(x) =
∫
x∈A

fX(x)dΛ(x)

The answer of this question is given by the theorem of Radon-Nikodym.

Theorem A.1 (Radon-Nikodym).
Let ν and µ be two positive and σ-finite measures on the measurable space (E, E) such

that µ is absolutely continuous with respect to ν (∀A ∈ E , µ(A) = 0⇒ ν(A) = 0).
Then there exists a function h such that

h : E → [0,+∞[, / ∀A ∈ E , µ(A) =
∫
A
hdν

.
The function h is called the Radon derivative of µ with respect to ν (or "density of µ w.r.t
ν") and we denote

h = dµ

dν

Notice that the function h is almost unique. The ambiguity relies on negligible sets for µ.
The probability density function (or PDF) is the Radon derivative of the probability law,
ηX , with respect to a measure of interest, ν.

Definition A.6 (Probability density function).

With words The probability density function of a random variable X is the weight func-
tion to compare the probability law with a measure of interest ν.

Formally

fX : E → [0,+∞[
x 7→ fX(x)

such that
∀A ∈ E ,

∫
x∈A

dηX(x) =
∫
x∈A

fX(x)dν(x)

To be fully exact, one should always precise the measure of interest ν to which the PDF
refers. In our case, the measure of interest is the Lebesgue measure (corresponding to lengths,
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surfaces and volumes): ν = Λ. It follows that fX is Lebesgue-integrable with integral 1.∫
x∈E

fX(x)dΛ(x) = ηX(E) = 1 (A.2)

The primitive of the probability function with 0 for limit when x → −∞, denoted by
FX(x), is called the cumulative distribution function or CDF. For 1-dimentional real-
valued random variable3, it is defined by equation A.3.

FX(x) =
∫ x

−∞
fX(y)dy = ηX(]−∞, x]) = P (X 6 x) (A.3)

The last expression allows to define the CDF even when the random variable has no PDF.
For example, the random variable with the Cantor function as cumulative density function has
no probability density function. Indeed, the law of such a random variable is not absolutely
continuous with respect to Lebesgue measure4. Hence the Radon-Nikodym theorem does not
apply. It gives an example of a random variable that have a continuous CDF but no PDF.

A.1.2.4 Expected value

A random variable (function from unknown space) is fully described by its probability law
(measure) or its probability density function (real positive valued function on the state space),
when it exists. The expected value describes the central trend of the random variable by a
scalar5 denoted E [X]. It requires additional regularity of the random variable, expressed with
Lp spaces.

Definition A.7 (Lp space).

With words The Lp space (shortcut for Lp(E,F )) is the ensemble of functions from E

to F , with (E, E , µ) a measured space, which are integrable at order p for the measure
µ.

Formally
Lp(E,F ) =

{
f : E → F

/∫
|f(t)|pdµ(t) < +∞

}

The application ‖f‖p = (
∫
|f(t)|pdµ(t))

1
p is a semi-norm for Lp because ‖f‖p = 0 ; f = 0

(take f = 1x=0(x) for instance). Hence, the space Lp is modified in order to make ‖f‖p a
norm. The modification consists in merging all functions equal almost everywhere, according
to µ.

3When E ⊂ Rn, the cumulative distribution function is defined by integration on the cuboid ⊗ni=1]−∞, xi].
4if K3 is the Cantor set, ηX([0, 1] \K3) = 0, while Λ([0, 1] \K3) = 1
5a single element of the state space. If E is multi-dimensional, E [X] will be multi-dimensional as well.

256

https://en.wikipedia.org/wiki/Cantor_function


Definition A.8 (Lp space).

With words The Lp space is the Lp.

Formally
Lp(E,F ) = {[f ], f ∈ Lp(E,F )}

with [f ] any element of {g ∈ Lp(E,F ), µ({x, f(x) 6= g(x)}) = 0}.

Applied to random variables, the previous definition with p = 1 is an assumption to define
the expected value. Let X ∈ L1(Ω, E) in the following definition.

Definition A.9 (Expected value).

With words The expected value of a random variable X is the average value of X
considering every element ω in the universe Ω with the measure P.

Formally
E [X] =

∫
ω∈Ω

X(ω)dP(ω) =
∫
x∈E

x dηX(x)

The equality
∫
ω∈ΩX(ω)dP(ω) =

∫
x∈E x dηX(x) come from the definition of ηX and the

substitution x = X(ω).

When X has a probability density function, the integral can be written with the Lebesgue
measure, which is easier to estimate.

E [X] =
∫
x∈E

x dηX(x) =
∫
x∈E

xfX(x) dΛ(x) (A.4)

However, the existence of E [X] is not guaranteed. For example, the Cauchy distribution
has no expected value. Let Z be a random variable with the following PDF:

fZ(z) = 1
π

1
1 + z2 (A.5)

Then zfZ(z) ∼
z→∞

1/(πz), thus the integral
∫
zfZ(z)dz does not converge. The Cauchy

distribution has no expected value.

A.1.2.5 Momenta

The definition of momenta involves the expected value E [X]. To do so, it is denoted for any
test function ϕ such that

∫
ϕ(x)fX(x)dx converges6,

E [ϕ(X)] =
∫
x∈E

ϕ(x) dηX(x) =
∫
x∈E

ϕ(x)fX(x) dΛ(x) (A.6)

6The equality A.6 also defines the distribution associated to X.
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Momenta are the scalars obtained by choosing ϕ of the form x 7→ xn with n ∈ N. The
integer n is called the order of the momentum. They are defined for Ln random variables.

Definition A.10 (Momenta).

With words The n-order momentum of a random variable X is the mathematical ex-
pectation of Xn.

Formally
E [Xn] =

∫
x∈E

xn dηX(x)

Centered momentum are often used :

E [(X − E [X])n] =
∫
x∈E

(x− E [X])n dηX(x) (A.7)

In particular, the 2-order centred momentum is the variance of X :

V (X) = E
[
(X − E [X])2

]
= E

[
X2
]
− E [X]2 (A.8)

It is of particular interested because it is easy to interpret as the discrepancy of the random
variable around the mean value. For a Gaussian random variable, mean and variance are the
only parameters needed to know everything about the random variable.

A.1.2.6 Conditional probability

Briefly, we recall some useful results for conditional probability such as the law of total
probability or Bayes’ theorem. Let A and B be two events, with P (B) 6= 0. The conditional
probability of A given B is denoted P (A|B).

Definition A.11 (Conditional probability).

With words The conditional probability of A given B is the ratio between P (A ∩B)
and P (B).

Formally
P (A|B) = P (A ∩B)

P (B)

The conditional probability is the probability that A and B occur, considering the event
B happens for sure. The events A and B are independent if and only if P (A|B) = P (A).
Noticing that P (A|B)P (B) = P (A ∩B) = P (B|A)P (A) one gets Bayes’ formula:
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Theorem A.2 (Bayes). Let A and B be two event of (Ω,F ,P) with P (B) 6= 0

P (A|B) = P (B|A)P (A)
P (B)

Bayes’ formula gave its name to Bayesian statistics and probability, in opposition to the
historical frequentist approach. The adjective Bayesian has now become synonym of using a
prior knowledge. The names of the terms in the theorem also are commonly used in a broader
sense.

• P (A|B) is the posterior, usually the output of Bayes’ theorem. It tells what happens
after the event B has been taken into account.

• P (A) is the prior, the external knowledge one wants to exploit. It can be a theoretical
insight, some expert advice or the information of a model... The choice of the prior
influences widely the result. The prior knowledge has to be trustworthy to take benefit
of Bayesian formulation.

• P (B|A) is the likelihood, the information usually coming from the observations. The
ratio P (B|A) /P (B) is the normalized likelihood.

Some probability laws are known only conditionally to some events. A useful tool to
exploit such knowledge is the formula of total probability:

Theorem A.3 (Law of total probability). Let A be an event of (Ω,F ,P) and (Bn)n∈N a
partition of Ω and such that P (Bn) 6= 0.

P (A) =
∑
n∈N

P (A|Bn)P (Bn)
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A.2 Simulation of random variables

As presented in the previous section, random variables are "measurable functions from a
probability space to a state space" (definition A.4). They induce several objects such as
probability law (def. A.5), probability density function (def. A.6), cumulative distribution
function (eq. A.3)... But in practice, one has to transpose these objects into numerical
equivalents, so that actual manipulations on them become possible. This section intents to
present how random variables are generated on a computer. It is important because the
quality of the pseudo-random generator is critical for the filtering method. It also helps to
understand the non-linear filtering algorithm.

A.2.1 Monte Carlo approximation

Monte Carlo approximation consists in using independent copies of the target random vari-
able, X, to estimate valuable information about X (expected value or PDF shape for exam-
ple). As in the previous section, the state space is denoted (E, E , ηX) and the probability space
is denoted (Ω,F ,P). They are both measured space with respective measures ηX (probability
law of random variable X) and P. Let us consider N independent copies of X, denoted by
X1, ..., XN . Throughout the manuscript, the key character " " will mean "follows the law".
As an example, X  U(0, 1) means "X follows the law U(0, 1)" (uniform between 0 and 1).
Thus, for any i ∈ [[1, N ]], Xi  ηX and all Xi are independent.

The expected value, E [X], (when it exists) is approached by an ensemble average with an
almost sure convergence (strong law of large numbers). The ensemble average is an unbiased
estimator of the expected value. For any test function ϕ, we also have almost sure convergence.

E [ϕ(X)] = lim
N→∞

1
N

N∑
i=1

ϕ(Xi)

As the previous equality holds for any test function ϕ, the empirical distribution ηNX
(defined by< ηNX , ϕ >= 1

N

∑N
i=1 ϕ(Xi)) converges almost surely toward the target distribution

ηX (defined by < ηX , ϕ >= E [ϕ(X)]). The empirical distribution is expressed with Dirac
distribution (δa is defined by < δa, ϕ >= ϕ(a)).

ηX = lim
N→∞

ηNX = lim
N→∞

1
N

N∑
i=1

δXi (A.9)

The probability density function, fX(x), (when it exists) is approached by a histogram.
The probability forX to be in a neighbourhood of a point x (let say Vx = [x−∆x/2, x+∆x/2])
is expressed in two ways: one involve the probability density function, the other involve the
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Mathematical object (def) Numerical
equivalent Link

Probability law (A.5) Monte Carlo
approximation ηX = lim

N→∞
ηNX = 1

N

N∑
i=1

δXi

Probability density function
(A.6) Histogram

∫
x∈Vx

fX(x′)dx′ = lim
N→∞

|{Xi ∈ Vx}|
N

Expected value (A.9) Ensemble average E [ϕ(X)] = lim
N→∞

1
N

N∑
i=1

ϕ(Xi)

Table A.1 – Correspondence between theoretical objects and their numerical equivalent with
Monte Carlo method.

histogram.

ηX([x−∆x/2, x+ ∆x/2]) =
∫ x+∆x/2

x−∆x/2
dηX(x′)

=
∫ x+∆x/2

x−∆x/2
fX(x′)dx′

= fX(x)∆x+ o(∆x)

(A.10)

ηNX ([x−∆x/2, x+ ∆x/2]) =
∫ x+∆x/2

x−∆x/2

1
N

N∑
i=1

δXi(dx′)

= 1
N

N∑
i=1

∫ x+∆x/2

x−∆x/2
δXi(dx′)︸ ︷︷ ︸

=1 if Xi∈Vx, 0 else

= 1
N
|{i, Xi ∈ [x−∆x/2, x+ ∆x/2]}|

(A.11)

The probability density function appears in A.10 (approximation ∆x → 0). The equation
A.11 leads to the proportion of sample present in [x − ∆x/2, x + ∆x/2]. Hence, PDF are
numerically visualized with histograms.

A.2.2 Pseudo-random generators

All valuable approximations in table A.1 rely on the assumption that anyXi is an independent
copy of X. How to obtain such a sample numerically? The main problem is that computer
are deterministic machine. Perfect randomness is thus not accessible, but it is possible to
build pseudo-random generator of numbers.

Pseudo-random generators are recursive sequences chosen to vary rapidly, but still dwell
inside [0,1]. Thus, pseudo-random generators provide approximation of uniform-distributed
samples. The generator of Fortran 90 and Scilab languages are tested, because both have
been used to implement the reconstruction algorithm. Pseudo-random generators are of the
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form of the equation A.12 (Hull and Dobell, 1962).{
xn+1 = axn + c [mod m]
x0 given (A.12)

The starting point x0 is called the random seed. Two sequences of same length generated
with the same seed will be equal, even though they look random. This a useful tool to make
repeatable random experiments. The seed can also be modified manually to ensures more
randomness.

A random generator is said good when it fulfils the best the next 4 qualities (by order of
importance):

1. The generated sample follows is uniformly distributed (its discrepancy is low).

2. Individuals in the sample are independent.

3. The period is large.

4. The sample is quickly generated.

The associated tests are recap in the table A.2 and further details are given below.

Tested
criterion

Law = U(0, 1) Independence Period Speed

Test Kolmogorov-Smirnov χ2 Autocorrelation Theory Timing

Table A.2 – Recap of criteria and tests used for the verification of the pseudo-random numbers
generators

The first property is assessed with two statistical tests. The Kolmogorov-Smirnov test
compares the empirical cumulative distribution function with the theoretical CDF of U(0, 1).
The statistic of the test is t = supx |FNX (x) − FX(x)| where FNX (x) is the empirical CDF
and FX(x) is the theoretical CDF. The χ2 test compares the empirical histogram with the
theoretical one, given a number of classes. The statistic of the test is t =

∑J
j=1

(Np̂j−Npj)2

Npj
where j is a class, N is the size of the sample, p̂j is the empirical probability for an individual
to be in the class j and pj its theoretical equivalent. For both tests, the null hypothesis is
"the sample follows a U(0, 1)". The conclusions of these tests are shown in table A.3 and A.4.

The second property is checked by having a look on the auto-correlation. In figure A.2
(resp. A.3) is shown the autocorrelation of the Scilab (resp. Fortran) sample. On both
graphics, the blue dashed line draw the punctual 95% prediction interval for an autocorrelation
of 0. As long as the autocorrelation remains in between the two blue dashed lines, it can be
neglected. Except few overshoots, the auto-correlation is within the prediction bound of 0.
Both generators can be assumed to provide independent realisations every time.
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χ2 test : t =
J∑
j=1

(Np̂j −Npj)2

Npj

Score t p-value Conclusion
Scilab 10.954 0.279 > α H0 not rejected
Fortran 9.05 0.4327 > α H0 not rejected

Table A.3 – Results of χ2 test with J = 10 classes and a sample of 104 individuals. The first
type error threshold is chosen to α = 0.05. The null hypothesis "the sample follows a U(0, 1)"
is accepted for both Scilab and Fortran generators.

Kolmogorov-Smirnov test : t = sup
x
|FN (x)− F (x)|

Score t p-value Conclusion
Scilab 0.0093 0.3473 > α H0 not rejected
Fortran 0.0084 0.4829 > α H0 not rejected

Table A.4 – Results of Kolmogorov-Smirnov test with a sample of 104 individuals. The first
type error threshold is chosen to α = 0.05. The null hypothesis "the sample follows a U(0, 1)"
is accepted for both Scilab and Fortran generators.

The third criterion (the periodicity) is given by the parameters in the equation A.12. For
Fortran, the value of 232 − 1 is given in Marsaglia et al. (2003) for 1-dimensional samples.
For Scilab, the documentation of the rand function gives the value of 231. Both are of order
of magnitude 109. If the program needs more random values than the period, the generated
sequence of random value will start over within a run of code. Having a large period ensures
the pseudo-random generators are "random" until the end. To avoid this shortcoming, the
random seed is reset to a new value at different moments in the program.

The last criterion (speed) is tested by timing the generation of the 104 values.

The four criteria and their test are given in the table A.2. The table A.5 gives the
conclusions of these tests : both are good enough pseudo-random generators, Fortran’s one
is better for both speed and period.

Langage Time to generate 104 values (s) Period Independence Uniformity
Fortran 2.3 · 10−4 232 − 1 OK OK
Scilab 3 · 10−2 231 OK OK

Table A.5 – Conclusions of all tests carried out on both generators. Both are good for use,
but Fortran’s one is way faster.
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Figure A.2 – Autocorrelation of Scilab
sample of 10000 values. Values inside the
two dashed blue lines are in the punctual
95% prediction interval of a 0 correlation
estimation.

Figure A.3 – Autocorrelation of Fortran
sample of 10000 values. Values inside the
two dashed blue lines are in the punctual
95% prediction interval of a 0 correlation
estimation.

A.2.3 Non-uniform sampling

As we have seen, pseudo-random generators provide good approximation of uniform-distributed
samples. Others distributions are generated from uniform-distributed samples. Specific solu-
tions exist to generate Gaussian-distributed sample (such as Box-Muller algorithm (Box et al.,
1958)). We are interested in the simulation of any distribution. The distribution transform
is used in the filtering method, to generate the posterior from the prior and the likelihood.

To describe the target distribution, the simplest way is to have a PDF (possibly un-
normed). Let G(x) a function on E that we call the potential. The potential associates to
any x its weight in the target distribution. The interpretation of G(x) is similar to fX(x).
As a consequence, G have to be a real positive and integrable function.

G : R → [0,+∞[
x 7→ G(x) with

∫ +∞

−∞
G(y)dy < +∞ (A.13)

Let (ui)i∈[[1,N ]] be an uniform-distributed Monte Carlo sample. From this sample, we want
to build a G-distributed sample (xi)i∈[[1,N ]]. As an example, we will take G the function
drawn in blue on A.4 (sum of 2 Gaussian because bi-modal and simple). The potential G is
an unnormed PDF. To get an actual PDF, one must use G/

∫
G(y)dy. Its associated normed
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CDF is denoted w and is defined by equation A.14.

∀x ∈ R, w(x) =

∫ x

−∞
G(y)dy∫ +∞

−∞
G(y)dy

(A.14)

On figure A.4, an example of G is drawn in blue line and the corresponding w is drawn in
red.

Figure A.4 – Example of unnormed PDF (or potential) G in blue (sum of 2 Gaussian) and
its associated normed CDF w.

The cumulative density function goes from the range of variation of X to [0, 1] and is
steeper where G is high. An uniform-distributed sample is converted into a G-distributed
sample by inverting the cumulative density function. Hence, one can build the G-distributed
sample by applying the inverse of w to every (ui)i∈[[1,N ]] (A.15).

∀i ∈ [[1, N ]], xi = inf{x, w(x) > ui} (A.15)

In figure A.5, one can see an uniform-distributed sample (ui)i∈[[1,N ]] on the y-axis, for
which every element is inverted with the w function (same example as in figure A.4). Thus,
on the x-axis is shown the resulting sample (xi)i∈[[1,N ]] which is build according the relation
A.15.

Theoretically, we have seen how to generate G-distributed random variable, for any real
positive integrable function G. But in practice, computer do not use analogic functions but
arrays of data. Hence, it is necessary to convert the previous reasoning in the discrete case
in order to get an algorithm.
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Figure A.5 – An uniform sample is changed into the target law sample using the inversion of
CDF. On the y-axis, arrows are uniform-distributed, on the x-axis they are G-distributed.

Now G denotes an array of size M , (G = (G1, ..., GM ) ∈ RM ) which gives the potential
on a discrete set of points x = (x1, ..., xM ) ∈ RM 7. For any k ∈ [[1,M ]], Gk = G(xk). In
this framework, w = (w1, ..., wM ) ∈ RM is the discrete CDF, and its definition equation of w
(A.14) is changed into (A.16):

∀k ∈ [[1,M ]], wk =

k∑
m=1

Gm

M∑
m=1

Gm

(A.16)

The inversion of w is modified as well, because the infimum has to belong to x. Using the
fact that w is a sorted array, the operation (A.15) is slightly modified into (A.17).

∀i ∈ [[1, N ]], xi = xk with k = min
m∈[[1,M ]]

{wm > ui} (A.17)

Gathering all the previous elements together, the algorithm A.1 is able to generate sample
according to the potential G. This algorithm has been applied to the example given in figures
A.4 and A.5 with M = 1000 (number of points in the discretization) and N = 5000 (size
of the sample). The result is shown in figure A.6. One can see that the normed histogram
(Monte Carlo equivalent of PDF) is closely comparable to the target PDF (normed potential
G). It proves that the algorithm A.1 correctly simulate G-distributed random variable. This
algorithm will be used many times to produce samples according to an empirical probability
law, only described by arrays of number.

7Beware: xk is a point on which G is known, xi is a element of generated sample.
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Algorithm A.1 Generate G-distributed samples : X = sampling(G,x)
Input: G = (G1, ..., GM ), x = (x1, ..., xM ) # with Gk = G(xk)
Output: X = (x1, ..., xN ) G
U = (u1, ..., uN ) U(0, 1)
w = cumsum(G)/sum(G)
for i ∈ [[1, N ]] do
k = minm,∈[[1,M ]]{wm > ui}
xi = xk

end for
return X = (x1, ..., xN )

Figure A.6 – Example of generation of samples with the algorithm A.1. Histogram of the
sample follows the shape of the potential G given.

A.3 Stochastic processes

The random variables used to describe physical phenomenon might be changing with time.
Hence we introduce stochastic processes ("stochastic" has exactly the same sense as "random",
but "stochastic" is the word in use). Introduction to stochastic processes can be found in
Øksendal (2013) and Gardiner (2009).
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Definition A.12 (Stochastic process).

With words A stochastic process is a family of random variable.

Formally (Xt)t∈[0,T ] is a stochastic process means that

∀t ∈ [0, T ], Xt : (Ω,F ,P) −→ (E, E)
ω 7−→ Xt(ω) is a random variable.

with T > 0.
However, the trajectory of Xt (the function t 7→ Xt(ω), ∀ω ∈ Ω) is deterministic.

A stochastic process is thus a function which depends on an random event: a "random func-
tion". Although, unlike a function, there is no representative curve for a stochastic process.
Instead, one can draw its momentum or few trajectories. The average is a deterministic func-
tion (t 7→ E [Xt]). The variance is a deterministic function (t 7→ V (Xt) = E

[
(Xt − E [Xt])2]).

Momenta provide only a partial information on the stochastic process. However, they help to
get a mental image of a stochastic process. This is now illustrated on two famous examples:
the Brownian motion, and the solution of Langevin equation.

A.3.1 The Brownian motion

In figure A.7 is shown an example of stochastic process with E [Xt] = 0 and cov(Xt, Xs) =
min(t, s). Some trajectories are drawn in red. The ensemble of trajectories expend around the
mean following the increasing variance (dashed blue lines). From a single trajectory it is not
obvious to see that expansion (figure A.8). This is why plotting several trajectories is a way to
visualize the "random dimension": some features of the trajectory are explained by the global
trend (the expansion), and other are just due to randomness (the side of expansion, local
variations). For example, if one would have only the average value and a single realization
(as in figure A.8) one would conclude that the realisation is in disagreement with the average,
although it is simulated in the exact same way as in figure A.7.

We underline here a common problem in signal processing : how to infer about stochastic
process from a single realisation? This point will be addressed in section A.4 (page 273).

The stochastic process shown figure A.7 is a really famous stochastic process: the Brownian
motion. Its name comes from the biologist Robert Brown that was the first to observe it in the
movement of particles inside a fluid in 1827. In 1905, Albert Einstein describes quantitatively
this random movement of particles and links it with the diffusion equation (Einstein (1905),
§4). The formal construction of Brownian motion as a stochastic process was done by Norbert
Wiener in 1923. Hence the Brownian motion is also called a Wiener process. Its formal
definition is the following:
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Figure A.7 – Example of stochastic process (Brownian motion): its average value (black) and
its standard variation (dashed blue) give hints on the behaviour of realizations (red).

Figure A.8 – Same stochastic process (Brownian motion) with only its average value (black)
and one realization (red).
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Definition A.13 (Brownian motion).

With words We call a Brownian motion a Gaussian process (Bt)t∈[0,T ] with mean zero
and with covariance equal to the smallest time.

Formally Given T > 0,

∀t, s ∈ [0, T ], E [Bt] = E [Bs] = 0, cov(Bt, Bs) = min(s, t)

where a Gaussian process is

Definition A.14 (Gaussian process).

With words A stochastic process (Xt)t∈[0,T ] is Gaussian when every sample of it form
a Gaussian vector (i.e. all linear combination of samples is Gaussian).

Formally

∀n ∈ N, ∀t1, ..., tn ∈ [0, T ], ∀θ ∈ Rn,
n∑
i=1

θiXti is Gaussian

In particular we have Bt  N (0, |t|) Hence its mean, variance and auto-covariance are
given by

• E [Bt] = 0
• V (Bt) = |t|
• cov(Bt, Bs) = min(t, s)

A.3.2 The Langevin equation

Another example is the Ornstein-Uhlenbeck process. It is the solution of the Langevin equa-
tion, which was historically made to describe the movement of a "large particle" dropped in
a viscous fluid.

dVt = −1
τ
Vtdt+ σdBt (A.18)

The equation A.18 is of different nature than usual partial differential equation: it is a stochas-
tic differential equation (i.e. a differential equation on stochastic processes). Fundations of
stochastic differential equations can be found in any course on stochastic calculus, and also in
the book of Øksendal (Øksendal, 2013) and Gardiner (Gardiner, 2009). Stochastic differen-
tial equation relies on Ito integral (integral of a stochastic process along a stochastic process).
The complete form of equation A.18 using Ito integral is

Vt − V0 =
∫ t

0
−1
τ
Vsds+

∫ t

0
σdBs (A.19)

but the "differential" form is often preferred because it is shorter.
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Using several theorem based on Ito integral, it is possible to solve the equation A.18 (see
Gardiner (2009) p.103, Øksendal (2013) p. 71).

Vt = V0e
− t
τ + σ

∫ t

0
e−

t−s
τ dBs (A.20)

In particular, it gives an analytic expression of the mean, the variance and the auto-covariance
of the solution process (Gardiner (2009) p. 104):

• E [Vt] = E [V0] e−
t
τ

• V (Vt) = σ2 τ

2 +
(
V (V0)− σ2 τ

2

)
e−2 t

τ

• cov(Vt, Vs) =
(
V (V0)− σ2 τ

2

)
e−

t+s
τ + σ2 τ

2e
t−s
τ

Numerically, it is possible to simulate some trajectories (see figure A.9). One can see in

Figure A.9 – Same Ornstein-Uhlenbeck process (solution of Langevin equation): average
(black) framed by standard variation (dashed blue) and few realizations.

figure A.9 that the behaviour of Ornstein-Uhlenbeck process is really different from the Brow-
nian motion. While the average of Brownian motion is always equal to zero, the average of
Ornstein-Uhlenbeck process is a converging exponential. While Brownian motion is infinitely
expanding, the variance of Ornstein-Uhlenbeck process converges toward a constant value.

Physically, Langevin equation is a model for the movement of a "large particle" dropped
in a viscous fluid. From figure A.9, we can tell that the particle will globally slow down in a
first phase (until time-step 400) and get stabilized around a constant speed in a second phase.
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Figure A.10 – The Ornstein-Uhlenbeck process with only its average value (black) and one
realization (red).

In this case, a single realization (as in figure A.10) will conserve the most important
features of global process: first phase of decreasing, second phase around the average. The
single realisation is more informative about the whole process.
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A.4 Signal processing

Wind measurements are stochastic processes (because of random turbulence and random
instrumental noise). What the instrument provides is a single realisation of the stochastic
process "wind". This section aims to clarify how the realisation helps to know the stochastic
process from which it is produced.

A.4.1 Stationarity and ergodicity

With time series of a single realization, we can compute statistics to describe the probability
law of the signal. We consider only real-valued signals indexed by t ∈ [0, T ] with T > 0. The
first assumption to do so is that the probability law of the signal does not change while we
compute the statistics. This assumption is called stationarity :

Definition A.15 (Stationarity).

With words A signal is said stationary if the joint law of a time-sample does not change
by translation in time

Formally

∀d ∈ N, ∀t1, ..., td, ∀τ, Law(Xt1 , ..., Xtd) = Law(Xt1+τ , ..., Xtd+τ )

This definition is stronger than just "the probability law of the signal does not change
with time". Indeed, if a signal is stationary in the sense given by definition A.15, then
∀t1, t2, Law(Xt1) = Law(Xt2) (if we choose τ = t2− t1). So it is correct to say that if a signal
is stationary, its probability law does not change with time. But the definition A.15 avoid
also other problematic cases.

A weaker definition of stationarity is limited to the invariance of the p first moments (from
Priestley (1981), def. 3.2.2).

Definition A.16 (Stationarity at order p).

With words A signal is said stationary at order p if the momenta up to p of the joint
law of a time-sample does not change by translation in time.

Formally

∀d ∈ N, ∀t1, ..., td, ∀τ, ∀k 6 p, E
[
(Xk

t1 , ..., X
k
td

)
]

= E
[
(Xk

t1+τ , ..., X
k
td+τ )

]
where E [·] refers to the joint law.

In particular, the stationarity at order p ensures that the momenta only depends on the time
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difference. For example, cov(Xt1 , Xt2) depends only on |t1 − t2|.

V ((Xt1 , Xt2)) =
(

V (Xt1) cov(Xt1 , Xt2)
cov(Xt1 , Xt2) V (Xt1)

)
= V ((X0, Xt2−t1))

if one takes t2 > t1 and τ = t1 in the definition.

As Gaussian processes are naturally very widespread, the process stationary at order 2
are common. Hence, it is sometimes said weak-sense stationary, which refers to process
stationary at order 2. This definition is sufficient for most of applications.

Some applications (like kriging) do not require weak stationarity but only stationarity on
the increments of the process. Such class of process are called intrinsic.

Definition A.17 (Intrinsic process).

With words A random signal Xt is intrinsic when its increments are centred with a
variance depending only on the difference of time.

Formally Xt is intrinsic ⇐⇒

• ∀t, s, E [Xt+s −Xt] = 0
• ∃γ : [0,+∞[→ R, ∀t, s, V (Xt+s −Xt) = 2γ(s)

Intrinsic processes are not necessarily stationary (not even at order one). For example, the
Brownian motion is intrinsic but it is not stationary, as we will see later. Conversely, processes
stationary at order 2 are intrinsic. Intrinsic process is the minimum property to introduce
the tools that are commonly used in signal processing, such as:

• The mean :
µX = E [Xt]

• Autocovariance :
CX(s) = cov(Xt+s, Xt)

• Autocorrelation :
ρX(s) = cov(Xt+s, Xt)√

V (Xt)V (Xt+s)

• Variogram :
γX(s) = 1

2V (Xt+s −Xt)

Autocovariance, autocorrelation and variogram are related in the case of stationary process
at order 2. In this case, the mean µX and the variance σ2

X are constant.

V (Xt+s −Xt) = V (Xt+s) + V (Xt)− 2cov(Xt+s, Xt) = 2σ2
X − 2cov(Xt+s, Xt) (A.21)
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Hence
γX(s) = σ2

X − CX(s) (A.22)

These probabilistic parameters are interesting because they give an intuitive interpretation
of the process. Intuitively, the larger is s, the less Xt+s is linked to Xt. Hence, the form
of CX give an information about the "memory" of the process. A process with "long range
memory" (i.e. with CX decreasing slowly) does not need to be observed very often, because
it is predictable. A process with "short range memory" (i.e. with CX decreasing quickly)
requires many observations to be described.

Stationarity is useful to define statistics invariant with time and thus common for a whole
time series. But it is not enough to estimate these statistics from a single realization x(t) of
Xt. Such a realisation must be representative of the whole process: explore the same area of
values, have the same variability. This property is called ergodicity. More precisely, under
which condition is the time average is comparable to the expected value?

Let Xt be a stochastic process stationary at order 2. The time average is the stochastic
process given by

Mτ = 1
τ

∫ τ

0
Xtdt (A.23)

Since Xt is stationary at order 2, its average is constant and its auto-covariance depends only
on the time gap (E [Xt] = µX and E [Xt1Xt2 ]−µ2

X = CX(t2− t1)). Mean and variance of Mτ

are expressed with these quantities.

E [Mτ ] = 1
τ

∫ τ

0
E [Xt] dt = µX (A.24)

V (Mτ ) = E
[(∫ τ

0
Xtdt

)2
]
− µ2

X

= 1
τ2E

[∫
[0,τ ]2

Xt1Xt2dt1dt2

]
− µ2

X

= 1
τ2

∫
[0,τ ]2

CX(t2 − t1)dt1dt2

= 1
τ2

∫ τ

−τ
dt

∫ τ

−τ
CX(s)ds with s = t2 − t1, t = t1

= 2
τ

∫ τ

0
CX(s)ds because CX is even

(A.25)

The time average Mτ (stochastic process) will be comparable to the expectation µX

(scalar) if its variance tends to 0. This requires
∫ τ
0 CX(s)ds = o

(
1
τ

)
. In particular, hav-

ing
∫+∞

0 CX(s)ds < ∞ is enough. Under this condition, the time average approximates
correctly the expectation.

For any x(t) Xt, lim
τ→∞

1
τ

∫ τ

0
x(t)dt = µX (A.26)
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For stochastic process less regular than stationary at order 2, it is still possible to define
ergodicity but the criteria are readable. Let Xt be a non-stationary process, one can define
the measure corresponding to the time average:

ντ : A ∈ E 7→ 1
τ

∫ τ

0
P (Xt ∈ A) dt (A.27)

ντ (A) is the ratio between the time Xt has spent in A versus the total time τ . If the ran-
dom variable Mτ follows the law ντ , its expectation is given by E [Mτ ] =

∫
E xντ (dx) =

1
τ

∫ τ
0
∫
E xP (Xt ∈ dx) dt = 1

τ

∫ τ
0 E [Xt] dt. Its variance is given by V (Mτ ) = 1

τ

∫ τ
0 V (Xt) +

1
τ

∫ τ
0 E [Xt]2 − 1

τ2 (
∫ τ

0 E [Xt])2. When it converges, the limit of ντ when τ → +∞ is the equi-
librium measure ν. A random variable following ν would be a "infinite time average". But
the link between the expectation of the equilibrium measure and the expectation of Xt is
subject to additional hypothesis. In consequence this manuscript will only focus on processes
stationary at order 2, as ergodicity is not the core of the problem.

Definition A.18 (Ergodicity).

With words A random signal Xt is ergodic when its mathematical expectation can be
approached by a time average. In particular, processes stationary at order 2 are ergodic
their auto-covariance decreases faster than 1/τ .

Formally
lim
τ→∞

E
[1
τ

∫ τ

0
Xtdt

]
= µX and lim

τ→∞
V

(1
τ

∫ τ

0
Xtdt

)
= 0

If Xt is stationary at order 2, it is equivalent to∫ τ

0
CX(s)ds = o

(1
τ

)

There is thus a distinction to make between theoretical quantities and reachable approx-
imation of them. The link between them relies on these 2 strong assumptions : stationarity
and ergodicity. Although there are strong, we usually assume they are verified because it is the
only way to make signal processing. Theoretical and approached mean and auto-covariance
are summarized in table A.6.

Theoretical Approached

Mean µX = E [Xt] mx(τ) = 1
τ

∫ τ

0
x(t)dt

Auto-covariance CX(s) + µ2
X = E [XtXt+s] Rxx(τ, s) = 1

τ

∫ τ

0
x(t)x(t+ s)dt

Table A.6 – Theoretical and approached expression of mean and auto-covariance under sta-
tionarity and ergodicity assumption.

For stationary and ergodic processes, these statistics are the best approximation one can
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have :
µX = lim

τ→∞
mx(τ) (A.28)

CX(s) + µ2
X = lim

τ→∞
Rxx(τ, s) (A.29)

Stationarity and ergodicity are the necessary hypothesis to infer properties of random
process Xt from a single realization of it x(t) = Xt(ω). Since in most cases it is impossible to
reproduce exactly the same experiment (especially in fluid dynamics), it is generally assumed
that processes are stationary and ergodic, so it is possible to make signal processing on them.

The validity of these hypothesis depend strongly on the choice of the integration time
τ . Indeed, a long integration time gives a better approximation of the expected value with
time average (it ensures ergodicity). But a long integration time let the time for the signal
probability law to change (it unvalidates stationnarity). On the other hand, a the signal
probability law is more likely to stay the same within a short integration time (it ensures
stationarity). But a short integration time deteriorates the approximation of mathematical
expectation with time average (it unvalidates ergodicity).

A.4.2 Fourier transform

The Fourier transform is the basis of many interpretations in signal processing, as it makes
the connection between the time-space and the frequency-space. At first, it is defined only
for periodic functions, that we decompose in pure harmonics : it yields to Fourier series. The
periodic function is described by a collection of coefficients that quantify the contribution
of a frequency in the signal. Fourier transform is an extension of that to any integrable
function. The integrable function is described by another function, that gives the continuous
contribution of frequencies in the signal. The mean value is not important for spectral analysis,
therefore the process Xt is supposed centred for this section.

Definition A.19 (Fourier transform).

With words The Fourier transform a function of time x(t) is the decomposition of the
signal onto a basis of purely oscillating functions. The result is a function of frequency
x̂(ξ) giving the contribution of the frequency ξ in the original signal.

Formally
∀x ∈ L1(R,R), x̂(ξ) =

∫ +∞

−∞
x(t)e−iξ·tdt

But most of the time, we use square-integrable function (function in L2, not necessarily in
L1). The integral in the given definition of Fourier transform is not defined for L2 functions.
Fourier transform is extended to L2 space by using the density of L1 ∩ L2 in L2 and the
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continuity of the integral. On L2, Fourier transform is a linear operator can conserve most of
the properties of its L1 equivalent.

Given a realisation x(t) of the stochastic process Xt, the function x : t ∈ [0,+∞[ 7→ R is
assumed L1([0,+∞[,R) and L2([0,+∞[,R). The signal x(t) is prolonged for t < 0 by 0.

A.4.3 Power spectral density

To visualize the frequency information brought by Fourier transform, we use the power spec-
tral density. It represents the energetic contribution of frequencies.

Definition A.20 (Power spectral density).

With words Power spectral density is the Fourier transform of the autocorrelation.

Formally
Γx(ξ) =

∫
s∈R

E [Xs−tXt] e−iξ·sds

This definition is applied to ergodic and stationary processes to reach a computable ex-
pression. The auto-covariance is approximated as described in table A.6 :

E [Xs−tXt] = lim
τ→∞

1
τ

∫ τ

0
x(t)x(s− t)dt (A.30)

Wiener-Khinchin theorem gives another expression of the PSD, sometimes taken as defi-
nition (see Miller and Childers (2012), def. 10.1). Here is a sketch of the proof.

Γx(ξ) =
∫
s∈R

(
lim
τ→∞

1
τ

∫ τ

0
x(t)x(s− t)dt

)
e−iξ·sds

= lim
τ→∞

1
τ

∫
s∈R

∫ τ

0
x(t)x(s− t)e−iξsdtds

= lim
τ→∞

1
τ

∫ τ

0
x(t)

(∫
s∈R

x(s− t)e−iξsds
)

︸ ︷︷ ︸
=x̂(ξ)e−iξt

dt

= x̂(ξ) lim
τ→∞

1
τ

∫ τ

0
x(t)e−iξtdt

' |x̂(ξ)|2

τmax

Thus the power spectral density is estimated by the squared modulus of the Fourier
transform divide by the sample length τmax.
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A.4.4 Examples

We will now illustrate these notions on the examples of stochastic processes seen before.

Brownian motion (definition A.13)

• Bt  N (0, |t|)
• E [Bt] = 0
• V (Bt) = |t|
• cov(Bs, Bt) = min(s, t)

The Brownian motion is stationary at order 1 because its average is always 0. It is also
intrinsic. But it is not stationary at order 2 because its variance depends on t (thus it is not
stationary in strong sense, neither stationary in weak sense). As a consequence, the relation
A.22 (γ = σ2 − C) does not hold.

• The mean :
µB = 0

• Autocovariance :
CB(s) = cov(Bt+s, Bt) = min(t+ s, t) = t

• Autocorrelation :

ρB(s) = cov(Bt+s, Bt)√
V (Bt+s)V (Bt)

=
√

t

t+ s

• Variogram :
γB(s) = |s|

The Brownian motion is not ergodic. A famous property of Brownian motion is that it is
dilating to infinity (it reaches every point of R in finite time):

Almost surely, lim sup
t→+∞

Bt = +∞ and lim inf
t→+∞

Bt = −∞ (A.31)

Hence the function τ 7→ 1
τ

∫ t0+τ
t0

b(t)dt does not converge for almost every realization b(t) of
Bt. As the Brownian motion is not stationary at order 2, its auto-covariance depends on the
time gap s and the starting time t. Thus, its spectrum cannot be defined the same way as
definition A.20.

To conclude, the Brownian motion is not stationary nor ergodic. Since these properties
are essential for a realization to be informative about the whole process, it explains why the
single realization shown on figure A.8 is not informative about the Brownian motion. However
it is intrinsic with a linear variogram.
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Langevin equation (solution of equation A.18)

• Vt = V0e
− t
τ + σ

∫ t

0
e−

t−s
τ dBs

• E [Vt] = E [V0] e−
t
τ

• V (Vt) = σ2 τ

2 +
(
V (V0)− σ2 τ

2

)
e−2 t

τ

• cov(Vt+s, Vt) =
(
V (V0)− σ2 τ

2

)
e−

2t+s
τ + σ2 τ

2e
− s
τ

The Ornstein-Ulhenbeck process (solution of Langevin equation) is not stationary, because
both its mean and its variance depend on time. But, after few τ , both mean and variance
reach a limit:

E [V∞] = 0

V (V∞) = σ2 τ

2
This limit is called the stationary solution of Langevin equation. According to Gardiner
(Gardiner (2009), p.74), the stationary solution is Gaussian

V∞  N
(

0, σ2 τ

2

)
Hence the stationary solution is order 2 stationary and intrinsic. Asymptotically when t →
+∞, it gives the following expressions:

• The mean :
µV = 0

• Autocovariance :
CV (s) = cov(Vt+s, Vt) = σ2 τ

2e
− s
τ

• Autocorrelation :
ρV (s) = cov(Vt+s, Vt)

V (V∞) = e−
s
τ

• Variogram :
γV (s) = σ2 τ

2
(
1− e−

s
τ

)

Exponential decrease of autocovariance is the example take by Gardiner for a sufficient
condition for the process to be ergodic (Gardiner (2009), p. 58). Hence, the Ornstein-
Ulhenbeck process is asymptotically ergodic.

Concerning its spectrum, the Fourier transform of its auto-covariance (which is an expo-
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nential) is a Lorenzian function :

ΓV (ξ) =
∫
s∈R

σ2 τ

2e
− s
τ e−iξ·sds

= σ2 τ

2

∫
s∈R

e−
s
τ
−iξ·sds

=
σ2 τ

2
1 + 4π2τ2ξ2

To conclude, the Ornstein-Ulhenbeck process is asymptotically stationary of order 2 and
ergodic. Its spectrum decrease with a -2 slope in a log-log scale (usual for PSDs). Because
of these properties the single realization shown on figure A.10 is informative about the whole
process.

A.5 Conclusion

This appendix intended to refresh some basics and to set the notations and the definitions
as they will be used in this document. The first section was giving the essential tools to
understand what a random variable is. The second section focused the numerical generation
of random variables. The third section introduced stochastic processes with two examples:
the Brownian motion and the Ornstein-Ulhenbeck process. The fourth and last section made
the link between the theoretical stochastic processes and the empirical time series of one
realisation.

Random variables are everywhere in turbulence, in filtering and in sensitivity analysis.
A random variable is a function from an unknown departure point (usually denoted ω).
To represent this "unknown dimension", one makes samples of the same random variable.
Such samples are generated on computer using pseudo-random numbers generators. Pseudo-
random numbers generators of two programming languages have been tested. The algorithm
to generate any random variable from a uniformly distributed sample has been explained. In
particular, the algorithm A.1 for the generation of a sample distributed along a given potential
is the key element of the filtering process.

Stochastic processes are families of random variables. As measurements are usually com-
posed of time series, stochastic process are relevant to model them. Two examples are given:
the Brownian motion and the Ornstein-Ulhenbeck process. The Brownian motion describes
the diffusing movement of a particle inside a fluid. In average, the movement is null (there is
no trend). But the variance steadily increases: the particle goes farer and farer but always
comes back. The Ornstein-Ulhenbeck process is the solution of the Langevin equation. This
equation is a simple model for a particle drop into a fluid. Conversely to the Brownian motion,
there is a trend and the variance is bounded.

Signal processing can be used in many contexts. The small section with this name in this
chapter intents to distinguish theoretical signals (stochastic process) from accessible signals
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(a single realisation of the stochastic process). Quantities of importance for applications
(average, variance, auto-covariance, variogram, spectrum) are introduced for both. It is
shown are they can be compared under the assumptions of stationarity and ergodicity. They
are illustrated on the two stochastic processes given in examples.
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Appendix B

Proofs

B.1 Formulae on reconstruction outputs

B.1.1 Influence of N on NG0

Theorem B.1 (Influence of N on NG0). If N > 1 is the number of particles and at any time
there are particles in the probe volume, for any n ∈ N, there exist α(n) > 0 and β(n) > 0
such that

P (NG0 = n) 6 α(n)e−N/β(n) (B.1)

Proof. A result of Del Moral (2004) (theorem 7.4.1, page 232) quoted by Baehr (2010)
(theorem 2.2) on the degeneracy of the particle filter is useful to reckon the influence of N
on NG0. Here is the theorem written with the notation of this manuscript.

If at any time there are particles in the probe volume , then ∀N > 1 and ∀t > 0,
the time τN at which potential is null for all particles follows the inequality:

P
(
τN 6 t

)
6 a(t)e−N/b(t) (B.2)

When the potential vanishes, the system is re-initialized. Thus, the NG0 extinctions are
independent and the time counter can be reset to zero. If the k-th extinction time is denoted
τNk and compared to the time tk (reset to zero after each extinction), the number of null
potential is written

P (NG0 = n) =
n∏
k=1

P
(
τNk 6 tk

)
6

n∏
k=1

a(tk)e−N/b(tk)

with the condition
∑n
k=1 tk 6 Nt.

It tells there exist α(n) =
∏n
k=1 a(tk) and β(n) = (

∑n
k=1 1/b(tk))−1 such that

P (NG0 = n) 6 α(n)e−N/β(n) (B.3)

Thus, the number of null potential decreases exponentially with N .
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B.1.2 Influence of σobs and σadd on NG0

Theorem B.2 (Influence of σobs and σadd on NG0). If the following assumptions are satisfied

• The real wind V r
z,t is stationary at order 2 and ergodic in space and time.

• The particles after conditioning Ṽt are Gaussian with the same mean and variance as
V r
z,t.

Then, the average number of null potential NG0 is bounded from above by a function of σobs
and σadd.

E [NG0] 6 NtNz
(σadd)2 + 2k

−
(
(σobs)2 + 2k

)
log
(
ι22π

(
(σobs)2 + 2k

)) (B.4)

with ι = 10−16, the zero machine threshold, and k = 1
2V
(
V r
z,t

)
(constant thanks to the sta-

tionarity assumption).

Proof. The number of null potential is defined as

NG0 =

∣∣∣∣∣
{

(z, t)/
N∑
i=1

Gobs(z, t, i) = 0
}∣∣∣∣∣

with Gobs(z, t, i) = exp
(
− (Ṽ it −V o(z,t))2

2(σobs)2

)
. The potential Gobs can be seen as a function of

two random variables: Ṽ it (as a realisation of the random variable Ṽt) and V o(z, t) (as a
realisation of the random variable V o

z,t). Let us consider the random variable G:

G = exp
(
−
(
Ṽt − V o

z,t

)2
2(σobs)2

)
(B.5)

The sum on the N particles can be seen as the Monte Carlo approximation of the expecta-
tion along Ṽt. The observation is considered as a data, thus it is a conditional expectation:

E
[
G|V o

z,t

]
estimated by

N∑
i=1

Gobs(z, t, i)

If we consider the discrete random variable Tz,t such that

Tz,t = 1E[G|V o
z,t]=0 =

{
1 if E

[
G|V o

z,t

]
= 0

0 else

Then, Tz,t follows a Bernoulli law with parameter pz,t = P
(
E
[
G|V o

z,t

]
= 0
)
. And NG0 is

thus the random variable equal to the sum of all Tz,t, for z ∈ [[1, Nz]] and t ∈ [[1, Nt]].

NG0 =
∑
z,t

Tz,t

If the parameter pz,t were constant, NG0 would have follow a binomial law, but it is not
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the case. Instead, we will find a bound for pz,t which depends on σobs and σadd but not on
z and t.

First, we express E
[
G|V o

z,t

]
. To do so, we use the assumption that Ṽt is Gaussian, of mean

µ̃ and variance σ̃2.

E
[
G|V o

z,t

]
= 1√

2πσ̃

∫
exp

(
−
(
x− V o

z,t

)2
2(σobs)2

)
exp

(
− (x− µ̃)2

2σ̃2

)
dx

From Bromiley (2003), the product of these two Gaussian functions is expressed, and it
yields to

E
[
G|V o

z,t

]
=
S(V o

z,t)√
2πσ

∫
exp

(
− (x− µ)2

2σ2

)
dx = S(V o

z,t)

with

1
σ2 = 1

(σobs)2 + 1
σ̃2 , µ =

(
µ̃

σ̃2 +
V o
z,t

(σobs)2

)
σ2 and S(V o

z,t) = 1
√

2π σ̃σobsσ

exp
(
−σ

2

2
(V o
z,t − µ̃)2

σ̃2(σobs)2

)

Solving the equation E
[
G|V o

z,t

]
= 0 yields to S(V o

z,t) = 0, which occurs when |V o
z,t − µ̃| =

+∞. However, because of machine threshold, the equality E
[
G|V o

z,t

]
= 0 is in reality

equivalent to E
[
G|V o

z,t

]
< ι (where ι = 10−16), which yields to the condition |V o

z,t − µ̃| >
β(σobs). Then, we know that theoretically V o

z,t  N
(
V r(z, t), (σadd)2) and µ̃ = E

[
V r
z,t

]
by

assumption. Hence, from Tchebychev inequality, we have

P
(
|V o
z,t − µ̃| > β(σobs)

)
6

1
β(σobs)2

(
(σadd)2 + (V r(z, t)− E

[
V r
z,t

]
)2)

with β(σobs) =
√
−(σ̃2 + (σobs)2) log

(
ι22π(σ̃2 + (σobs)2)

)
. In this upper bound, two terms

will be rewritten with the wind variance: σ̃2 = 2k (by assumption) and (V r(z, t)−E
[
V r
z,t

]
)2.

Moreover, since the process V r
z,t is assumed stationary at order 2, the wind variance is a

constant and equal to 2k, as stated in the assumptions. Since V r(z, t) is a realization of
the process V r

z,t, the term (V r(z, t) − E
[
V r
z,t

]
)2 is a realization of the variance estimator

when the average is known. The term (V r(z, t)− E
[
V r
z,t

]
)2 itself is different for each time

step t or vertical level z. But since the process V r
z,t is assumed ergodic in time and space,

the time and space average 1
NzNt

∑
z,t(V r(z, t)−E

[
V r
z,t

]
)2 converges toward V

(
V r
z,t

)
when
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NzNt → +∞. Hence, the expectation of NG0 can be bounded as follows:

E [NG0] =
∑
z,t

E [Tz,t]

=
∑
z,t

P
(
E
[
G|V o

z,t

]
= 0
)

6
∑
z,t

(σadd)2 + (V r(z, t)− E
[
V r
z,t

]
)2

β(σobs)2

= 1
β(σobs)2

NtNz(σadd)2 +
∑
z,t

(V r(z, t)− E
[
V r
z,t

]
)2

︸ ︷︷ ︸
=NtNz2k


= NtNz

(σadd)2 + 2k

−
(
(σobs)2 + 2k

)
log
(
ι22π

(
(σobs)2 + 2k

))
which gives the result.

B.2 Theorems in sensitivity analysis

B.2.1 ANOVA decomposition

Theorem B.3 (ANOVA decomposition). Let f : [0, 1]p → R be an integrable function.
Previous notations hold.
Then, there exists a unique decomposition of f :

f(x) =
∑
u∈I

fu(xu)

= f∅ +
p∑
i=1

fi(xi) +
∑

16i<j6p
fij(xi, xj) + · · ·+ f1,...,p(x1, . . . , xp)

(B.6)

such that
∀u ∈ I, ∀i ∈ u,

∫ 1

0
fu(xu)dxi = 0 (B.7)

The proof of this theorem has been first made by Sobol in Sobol (1976), using Fourier-
Haar decompositions. Then a simpler version is in Sobol (1993). This is a proof adapted to
our notations.

Proof. (From Sobol (1993, 1976))
First we prove existence, then uniqueness of the family (fu)u∈I which satisfies properties
(B.6) et (B.7).
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Existence
Let consider the following functions :

gu :
[0, 1]|u| → R

xu 7→ gu(xu) =
∫

[0,1]|ū|
f(x)dxū

with the convention g[[1,p]](x1, . . . , xp) = f(x).

The functions fu will be built recursively thanks to the functions g. At first, with the
hands, in order to satisfy the second part of theorem (B.7).

f∅ =
∫

[0,1]p
f(x)dx = g∅

•• ∀i ∈ [[1, p]], fi(xi) =
∫

[0,1]p−1
f(x)dx1 . . . dxi−1dxi+1 . . . dxp − f∅ = gi(xi)− f∅

• ∀i, j ∈ [[1, p]], fij(xi, xj) = gij(xi, xj)− fi(xi)− fj(xj)

• ∀i, j, k ∈ [[1, p]], fijk(xi, xj , xk) = gijk(xi, xj , xj)−fij(xi, xj)−fik(xi, xk)−fjk(xj , xk)

• . . .

It will be proven that the functions of the decomposition are

fu :
[0, 1]|u| → R

xu 7→ fu(xu) = gu(xu)−
∑
i∈u

fu\i(xu\i)

One can express the functions (gu)u∈I with the functions of the decomposition:

gu(xu) =
∑
v⊂u

fv(xv)

And because g[[1,p]](x1, . . . , xp) = f(x), one gets directly the decomposition 4.1.

f(x) =
∑
u∈I

fu(xu)

The property B.7 of the decomposition functions is still to be proven. Recursively on the
cardinal of u :

|u| = 1 Let u = i. Then,∫ 1
0 fi(xi)dxi =

∫ 1
0 gi(xi)dxi − f∅

=
∫ 1

0
∫

[0,1]|v| f(x)dxvdxi − f∅ with v = [[1, p]] \ i
=

∫
[0,1]p f(x)dx− f∅

= 0

?? |u| = k − 1⇒ |u| = k Let u ∈ I of cardinal k. The following property is assumed true
for all n 6 k :

∀v, |v| = n, ∀i ∈ v,
∫ 1

0
fv(xv)dxi = 0

.
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Then this property is also true for u. Let j ∈ u.

∫ 1
0 fu(xu)dxj =

∫ 1

0
gu(xu)dxj︸ ︷︷ ︸
fu\j(xu\j)

−
∑
i∈u

∫ 1

0
fu\i(xu\i)dxj︸ ︷︷ ︸{
0 if i 6= j

fu\j(xu\j) if i = j

= fu\j(xu\j)− fu\j(xu\j) = 0

because |u \ i| = k − 1 hence the property is true by assumption. The change of gu
come from Fubini’s theorem.

A family of functions fu, u ∈ I satisfying the theorem has been found. It proves the exis-
tence of such a family.

Uniqueness
To prove its uniqueness, let

(
f̃u
)

u∈I and (fu)u∈I be two families of functions such that
properties (B.6) and (B.7) are verified.

It will be proven that ∀u ∈ I, fu = f̃u recursively on the cardinal of u.

|u| = 0 By integration of (B.6) with respect to (x1, . . . , xp) :∫
[0,1]p

f(x)dx = f∅ = f̃∅

because ∀u 6= ∅, ∃i ∈ [[1, p]], i ∈ u so
∫

[0,1]p fu(xu)dx =
∫

[0,1]p f̃u(xu)dx = 0 thanks to
the property (B.7).

?? |u| = k − 1⇒ |u| = k Let k ∈ [[1, p]]. It is assumed the elements of
(
f̃u
)

u∈I and
(fu)u∈I are equal for |u| < k.
Let v ∈ I, |v| = k. One wants to prove that f̃v = fv. To achieve this, one makes the
integration of (B.6) with respect to xv̄ :∫

[0,1]|v̄|
f(x)dx = f∅ +

∑
u∈I

∫
[0,1]|v̄|

fu(xu)dxv̄ = f̃∅ +
∑
u∈I

∫
[0,1]|v̄|

f̃u(xu)dxv̄

In the sum, the terms u ∈ I of cardinal lower than k are equal on each side (hypothesis
of recurrence). One takes them out of the sum. For f and f̃ , the remaining integral
is written as follows ∫

[0,1]|v̄|
fu(xu)dxv̄ =

{
fv(xv) if u = v
0 if u 6= v

The case u 6= v is split in two sub-cases : ∃i ∈ u, i /∈ v or ∃i ∈ u, i /∈ v .
If ∃i ∈ u, i /∈ v, then i ∈ v̄ and the property (B.7) ensures nullity.
If ∃i ∈ v, i /∈ u, then |u| 6 k. Terms of cardinal lower than k have been removed
thanks to the recurrence hypothesis. Only terms of equal cardinal are left. The two
sub-cases lead thus to the same conclusion. We are back to the previous sub-case and
the property (B.7) ensures nullity.
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It has been shown that ∀k ∈ [[0, p]], ∀u ∈ I, |u| = k, fu = f̃u. One can conclude that

∀u ∈ I, fu = f̃u

Which ensures the uniqueness of the family (fu)u∈I and ends the proof.

B.2.2 Orthogonality in ANOVA decomposition

Proposition B.1. Let f : [0, 1]p → R be integrable and (fu)u∈I the functions of its ANOVA
decomposition. Then,

∀u,v ∈ I, u 6= v,
∫

[0,1]p
fu(xu)fv(xv)dx = 0 (B.8)

Proof. (From Sobol (1993, 1976))
Soient u et v dans I tels que u 6= v. Précision le sens de u 6= v, négation de u = v.

u = v ⇔ u ⊂ v ∧ v ⊂ u ⇔ ∀i ∈ u, i ∈ v ∧ ∀j ∈ v, j ∈ u

Par négation, on a
u 6= v ⇔ ∃i ∈ u, i /∈ v ∨ ∃j ∈ v, j /∈ u

Dans notre problème, u et v ont des rôles symétriques. On peut donc considérer ∃i ∈ u, i /∈
v ou bien ∃j ∈ v, j /∈ u indifféremment. Disons que l’on considère ∃i ∈ u, i /∈ v. Alors,
d’après le théorème de Fubini,

∫
[0,1]p

fu(xu)fv(xv)dx =
∫

[0,1]p−1

(∫ 1

0
fu(xu)fv(xv)dxi

)
dxī =

∫
[0,1]p−1

fv(xv)
∫ 1

0
fu(xu)dxi︸ ︷︷ ︸

=0

 dxī = 0

Le fait que i ∈ u, i /∈ v permet de sortir fv(xv) de l’intégrale et d’annuler
∫ 1

0 fu(xu)dxi
grâce à la propriété (B.7).

B.2.3 Orthogonality of Hoeffding spaces

Proposition B.2 (Orthogonality of Hoeffding spaces).

∀u,v ∈ I,u 6= v, H0
u ⊥ H0

v (B.9)

Proof. (From Chastaing (2013))
Comme pour la décomposition ANOVA, ce résultat se prouve en deux parties : d’abord un
résultat du type (B.7), ensuite le résultat d’orthogonalité proprement dit (B.9).
Montrons d’abord

∀u ∈ I, ∀hu ∈ H0
u, ∀i ∈ u,

∫
hu(xu)ηXi(dxi) = 0 (B.10)
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Soit u ∈ I, hu ∈ H0
u et i ∈ u. Remarquons que {i, ū} = {u \ i} que

∫
ηXū(dxū) = 1.

L’indépendance des composantes permet d’écrire∫
hu(xu)ηXi(dxi) =

∫ (∫
hu(xu)ηXi(dxi)

)
ηXū(dxū) indépendance des composantes

=
∫
hu(xu)ηXv̄(dxv̄) en prenant v = u \ i

= E [hu(xu)|Xv] = 0 car |v| < |u|

ce qui prouve le résultat intermédiaire.

Soit maintenant u 6= v ∈ I, hu ∈ H0
u et hv ∈ H0

v. Comme u 6= v on prend i ∈ u, i /∈ v.∫
hu(xu)hv(xv)ηX(x) =

∫
hu(xv)

(∫
hu(xu)ηXi(dxi)

)
︸ ︷︷ ︸

=0

ηXī(dxī) = 0

Le cas i ∈ v, i /∈ u est immédiat puisque u et v ont un rôle symétrique.

B.2.4 Hoeffding’s lemma

Lemme B.1 (Hoeffding projection). Considering

• X1, ..., Xp independent random variables.

• T ∈ L2(Ω,R) (real random variable of finite variance E
[
T 2] < +∞).

Then, for all u ∈ I, the orthogonal projection of T in H0
u in written

πH0
u
(T ) =

∑
v⊂u

(−1)|u|−|v|E [T |Xv] (B.11)

Proof. (From Chastaing (2013))
Soit u ∈ I. Montrons d’abord que l’opérateur définit par l’équation (B.11) est le projecteur
orthogonal de L2 sur H0

u.
On désigne par πH0

u
le projecteur orthogonal de L2 sur H0

u. Son existence est garantie par
le fait que H0

u est une sous-espace vectoriel de L2 (H0
u est stable par combinaison linéaire

puisque l’espérance est linéaire).
On désigne par φu l’opérateur définit par l’équation (B.11) : φu(T ) =

∑
v⊂u(−1)|u|−|v|E [T |Xv]

On veut prouver que ∀T ∈ L2, φu(T ) = πH0
u
(T ).

Soit T ∈ L2. Par définition de πH0
u
, L2 = ker(πH0

u
)
⊥
⊕ Im(πH0

u
) = (H0

u)⊥
⊥
⊕H0

u. Donc

∃! (F ′, G′) ∈ (H0
u)⊥ ×H0

u, T = F ′ +G′

de plus G′ = πH0
u
(T ) et F ′ = T − πH0

u
(T ).

Or,
T = T − φu(T )︸ ︷︷ ︸

F

+ φu(T )︸ ︷︷ ︸
G
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donc il suffit de montrer que G ∈ H0
u et F ∈ (H0

u)⊥ pour conclure par unicité de la décom-
position orthogonale que G = G′ et F = F ′. On aura alors prouvé que ∀T ∈ L2, φu(T ) =
G = G′ = πH0

u
(T ).

φu(T ) ∈ H0
u

Soit w ∈ I, w ⊂ u. Montrons que E [G|Xw] = 0.

E [φu(T )|Xw] =
∑
v⊂u

(−1)|u|−|v|E [E [T |Xv] |Xw]

=
∑
v⊂u

(−1)|u|−|v|E [E [T |Xv] |Xv∩w] par indépendance des Xi

=
∑
v⊂u

(−1)|u|−|v|E [T |Xv∩w] car σ(Xv∩w) ⊂ σ(Xv)

Arrêtons-nous sur ce résultat en examinant quelques cas particuliers.
Pour u = {i},

φi(T ) = E [T |Xi]− E [T ]

Pour u = {i, j},

φi,j(T ) = E [T |Xi, Xj ]− E [T |Xi]− E [T |Xj ] + E [T ]

Pour u = {i, j, k},

φi,j,k(T ) = E [T |Xi, Xj , Xk]
−E [T |Xi, Xj ]− E [T |Xi, Xk]− E [T |Xj , Xk]
+E [T |Xi] + E [T |Xj ] + E [T |Xk]
−E [T ]

Prenons par exemple w = {i} pour conditionner φi,j,k(T ). On rappelle la convention
E [T |∅] = E [T ].

E [φi,j,k(T )|Xi] = E [T |Xi]
−E [T |Xi]− E [T |Xi]− E [T ]
+E [T |Xi] + E [T ] + E [T ]
−E [T ]

= 2E [T |Xi]− 2E [T |Xi] + 2E [T ]− 2E [T ]
= 0

De même si l’on prend w = {i, j} pour conditionner φi,j,k(T ).

E [φi,j,k(T )|Xi, Xj ] = E [T |Xi, Xj ]
−E [T |Xi, Xj ]− E [T |Xi]− E [T |Xj ]
+E [T |Xi] + E [T |Xj ] + E [T ]
−E [T ]

E [φi,j,k(T )|Xi, Xj ] = E [T |Xi, Xj ]− E [T |Xi, Xj ] + E [T |Xi]− E [T |Xi, Xj ]
+E [T |Xj ]− E [T |Xj ] + E [T ]− E [T ]

E [φi,j,k(T )|Xi, Xj ] = 0

On voit sur ces cas particuliers que la somme sur les v ⊂ u se transforme en somme sur
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t ⊂ w. On compte
(|u|−|w|
|t|

)
termes identiques. On généralise ce résultat :

E [φu(T )|Xw] =
∑
v⊂u

(−1)|u|−|v|E [T |Xv∩w]

=
∑
t⊂w

|u|−|w|∑
j=0

(−1)|u|−|t|−j
(
|u| − |w|

j

)
E [T |Xt]

=
∑
t⊂w

(−1)|u|−|t|E [T |Xt]

|u|−|w|∑
j=0

(−1)j
(
|u| − |w|

j

)
︸ ︷︷ ︸

=0
= 0

On a montré que ∀w ∈ I, w ⊂ u, E [φu(T )|Xw] = 0. Donc φu(T ) ∈ H0
u.

T − φu(T ) ∈ (H0
u)⊥

Soit hu ∈ H0
u. Montrons que E [(T − φu(T ))hu(Xu)] = 0.

E [(T − φu(T ))hu(Xu)] = E [Thu(Xu)]− E [φu(T ))hu(Xu)]
= E [Thu(Xu)]− E [E [T |Xu]hu(Xu)]︸ ︷︷ ︸

α

−
∑
v⊂u
v6=u

(−1)|u|−|v|E [E [T |Xv]hu(Xu)]︸ ︷︷ ︸
β

Précisons les termes α et β :

α = E [E [T |Xu]hu(Xu)] = E [E [Thu(Xu)|Xu]] = E [Thu(Xu)]

car Xu est Xu-mesurable, hu est mesurable, donc hu(Xu) est Xu-mesurable.

β = E
[
E [T |Xv]hu(Xu)

]
= E

[
E
(
E [T |Xv]hu(Xu)

∣∣∣∣Xv

)]
= E

E [T |Xv]E [hu(Xu)|Xv]︸ ︷︷ ︸
=0

 = 0

Donc
E [(T − φu(T ))hu(Xu)] = E [Thu(Xu)]− E [Thu(Xu)]− 0 = 0

On vient de montrer que (T − φu(T )) ⊥ hu(Xu), ∀hu(Xu) ∈ H0
u. Donc (T − φu(T )) ∈

(H0
u)⊥. Par unicité de la décomposition (propriété du projecteur orthogonal πH0

u
), on a

bien
∀T ∈ L2, πH0

u
(T ) =

∑
v⊂u

(−1)|u|−|v|E [T |Xv]
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B.2.5 Hoeffding decomposition

Theorem B.4 (Hoeffding decomposition). Let Y : (Ω,F ,P)→ (R,B(R)) et X : (Ω,F ,P)→
(Rp,B(Rp)) such that Y = f(X) with f : (Rp,B(Rp)) → (R,B(R)), a measurable function.
Previous notations hold.
Under the following assumptions :

1. Y has a finite variance (i.e. E
[
Y 2] < +∞).

2. The inputs Xi, i ∈ [[1, p]] are independent : pX(x) =
∏p
i=1 pXi(xi).

Then it exists an unique decomposition of Y with respect to (Xi)i :

Y =
∑
u∈I

fu(Xu)

= f∅ +
p∑
i=1

fi(Xi) +
∑

16i<j6p
fij(Xi, Xj) + · · ·+ f1,...,p(X1, . . . , Xp)

(B.12)

such that
∀u ∈ I, fu(Xu) =

∑
v⊂u

(−1)|u|−|v|E [Y |Xv] (B.13)

Proof. (From Chastaing (2013))
Plaçons-nous dans le cadre de la projection de Hoeffding. Soit Y est de variance finie (i.e.
E
[
Y 2] < +∞) telle que Y = f(X). Par définition de L2, Y ∈ L2(Ω,R), et par définition

des espaces de Hoeffding, f ∈ H[[1,p]].

Montrons d’abord
∀u ∈ I, Hu ⊂

⊕
v⊂u

H0
v (B.14)

Soit u ∈ I et hu(Xu) ∈ Hu. D’après la proposition (B.2) (orthogonalité des espaces de
Hoeffding), le projecteur orthogonal sur l’ensemble

⊕
v⊂u H

0
v s’écrit comme la somme des

projecteurs orthogonaux sur chacun des ensembles H0
v.

π⊕
v⊂u

H0
v

=
∑
v⊂u

πH0
v

Ainsi,

hu(Xu)− π⊕
v⊂u

H0
v
(hu(Xu)) = hu(Xu)−

∑
v⊂u

πH0
v
(hu(Xu))

= hu(Xu)− hu(Xu) car ∀v ⊂ u, v 6= u, πH0
v
(hu(Xu)) = 0

= 0

On vient de montrer que hu(Xu) = π⊕
v⊂u

H0
v
(hu(Xu)) ∈

⊕
v⊂u H

0
v pour tout élément

hu(Xu) de Hu. Donc Hu ⊂
⊕

v⊂u H
0
v.
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On applique ce résultat à f ∈ H[[1,p]] ⊂
⊕

u∈I H
0
u.

f(X) =
∑
u∈I

πH0
u
(f(X))︸ ︷︷ ︸

fu(Xu)

Et l’expression des fu(Xu) découle du lemme de Hoeffding (B.1).

B.2.6 Variance decomposition

Corollary B.1. Under the same assumptions than for the theorem ??,

V (Y ) =
∑
u∈I

V (fu(Xu)) =
∑
u∈I

(
V (E [Y |Xu]) +

∑
v⊂u

(−1)|u|−|v|V (E [Y |Xv])
)

(B.15)

Proof. (From Chastaing (2013))
Comme Y est de variance finie (hypothèse du théorème ??), on peut prendre la variance
dans l’équation 4.6.

V (Y ) = V

(∑
u∈I

fu(Xu)
)

=
∑
u∈I

V (fu(Xu)) +
∑

u,v∈I
u∩v6=u,v

cov(fu(Xu), fv(Xv))︸ ︷︷ ︸
=0 car H0

u⊥H0
v

=
∑
u∈I

V

(∑
v⊂u

(−1)|u|−|v|E [Y |Xv]
)

=
∑
u∈I

V (E [Y |Xu]) +
∑
v⊂u
v6=u

(−1)|u|−|v|V (E [Y |Xv]) +
∑

v,w⊂u
v∩w 6=

w,v

cov(E [Y |Xw] ,E [Y |Xv])︸ ︷︷ ︸
=0 par indépendance


=

∑
u∈I

V (E [Y |Xu]) +
∑
v⊂u
v6=u

(−1)|u|−|v|V (E [Y |Xv])


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B.2.7 Simple, complete and total Sobol indices

Proposition B.3. Let u ∈ I. With the notation introduced above, simple, total and complete
Sobol indices have the following expression :

Du = V (E [Y |Xu]) +
∑
v⊂u
v 6=u

(−1)|u|−|v|V (E [Y |Xv]) (B.16)

DC
u = V (E [Y |Xu]) (B.17)

DT
u = V (Y )− V (E [Y |Xū]) (B.18)

Proof. (Evoked in Owen (2013) and Homma and Saltelli (1996))

Expression 4.9 is the direct application of theorem 4.2.

•• Expression 4.10 is obtained by writing the double sum and grouping the terms of same
sign:

DC
u =

∑
v∈I
v⊆u

Dv =
∑
v∈I
v⊆u

∑
w∈I
w⊆v

(−1)|v|−|w|V (E [Y |Xw])

= V (E [Y |Xu]) +
∑
t⊂u

|u|−|t|∑
j=0

(−1)|u|−|t|−j
(
|u| − |t|

j

)
V (E [Y |Xt])

= V (E [Y |Xu]) +
∑
t⊂u

(−1)|u|−|t|V (E [Y |Xt])
|u|−|t|∑
j=0

(−1)j
(
|u| − |t|

j

)
︸ ︷︷ ︸

=0
= V (E [Y |Xu])

• Expression 4.11 is a consequence of 4.10:

DT
u +DC

ū =
∑
v∈I

v∩u6=∅

Dv +
∑
v∈I
v⊆ū

Dv =
∑
v∈I

Dv = V (Y )

because {v ∈ I,v∩u 6= ∅}∪ {v ∈ I,v ⊆ ū} = I (see ? and ? equation 11). It follows
that

DT
u = V (Y )−DC

ū = V (Y )− V (E [Y |Xū])
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B.3 Results related to penalized regression

B.3.1 Sobol indices estimation with regression

Lemme B.2. For any set u of indices (u ∈ I ′), when

(au, bu) = argmin
(a,b)

{
E
[
(Y − aYu − b)2

]
+ E

[
(Yu − aY − b)2

]}
(B.19)

then
au = Su

Proof. In the function to minimize, Y and Yu have a symmetric role and follows the same
law.

J(a, b) = E
[
(Y − aYu − b)2

]
+ E

[
(Yu − aY − b)2

]
= E

[
Y 2]+ a2E

[
Y 2

u
]

+ b2 − 2aE [YuY ]− 2abE [Yu]− 2bE [Y ]
+E

[
Y 2

u
]

+ a2E
[
Y 2]+ b2 − 2aE [YuY ]− 2abE [Y ]− 2bE [Yu]

= 2
(
E
[
Y 2]+ a2E

[
Y 2]+ b2 − 2aE [YuY ]− 2abE [Y ]− 2bE [Y ]

)
which is parabolic, thus has only one minimum, reached at the point denoted (au, bu). We
solve ∇J(au, bu) = 0.

∇J(a, b) =
(

4aE
[
Y 2]+ 4bE [Y ]− 4E [YuY ]
4b+ 4aE [Y ]− 4E [Y ]

)
Setting the second component to zero of the gradient yields to equation :

bu = E [Y ] (1− au) (B.20)

Setting the first component to zero and using the last equation yield to

au = E [YuY ]− E [Y ]2

E [Y 2]− E [Y ]2
= cov(Y, Yu)

V (Y ) = Su

B.3.2 Solution of Lasso regression

Proposition B.4. For any u ∈ I ′, the Lasso and least squares estimators are related accord-
ing to the following formula:

Ŝl1u = max
(
Ŝlsu − ε1, 0

)
with ε1 = λ1

2σ2 .
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Proof. The cost function to minimize is denoted

J : R → R
a 7→ J(a) = ‖Y − aYu‖22 + λ1|a|

For the sake of readability, notations including u are shortened as follow: σ2 = Y TY =
Y Tu Yu, âls = Ŝlsu = (Y Tu Yu)−1Y Tu Y . This cost function is developed.

J(a) = σ2
(

1 + a2 − 2aâls + λ1

σ2 |a|
)

The function J is differentiable everywhere but in a = 0. For any a 6= 0,

∂J

∂a
(a) = 2σ2

(
a− âls + λ1

2σ2 sign(a)
)

The term ε1 = λ1
2σ2 appears, this notation holds for the rest of the proof. The derivative is

discontinuous when a = 0. It jumps from −âls− ε1 to −âls + ε1. When we solve ∂J
∂a (â) = 0

we must distinguish the case of 0 ∈ [−âls − ε1,−âls + ε1] (that is to say |âls| 6 ε1). Three
cases are to consider:

•• |âls| 6 ε1

• âls > ε1

• âls < −ε1

When |âls| 6 ε1, there is no solution for the equation ∂J
∂a (â) = 0. Nevertheless, when

|âls| 6 ε1, the value 0 is within the discontinuity at a = 0.

lim
a→0+

∂J

∂a
(a) = 2σ2 (ε1 − âls

)
> 0 and lim

a→0−
∂J

∂a
(a) = −2σ2 (ε1 + âls

)
6 0

Hence, when |âls| 6 ε1, J(a) reaches its minimum at â = 0.

When âls > ε1, setting the derivative to zero gives

â = âls − ε1

When âls < −ε, setting the derivative to zero gives

â = âls + ε1

Finally, all cases are gathered into the single following expression:

â = sign(âls) max
(
|âls| − ε1, 0

)
In the case of Sobol indices, it is reasonable to dismiss the case âls < −ε1 (it can happen
either if the least square estimation is really bad or the penalty is very small). Going back
to the problem 8.13, the Lasso estimator is given by Ŝl1u = â.
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B.3.3 Solution of best subset regression

Proposition B.5. For any u ∈ I ′, the best subset and least squares estimators are related
according to the following formula:

Ŝl0u = Ŝlsu 1
Ŝlsu >ε0

with ε0 =
√

λ0
σ2 .

Proof. We assume exactly k upon d coefficients of the vector a are non-zero and we index
a such that they are first.

a = (au)u∈I′ = (a1, ..., ak, 0, ..., 0)

The cost function to minimize depends on the number of non-zero:

J(k) =
k∑
i=1
‖Y − aiYi‖22 + (2p − k)‖Y ‖22 + kλ0

It is worth to set the next coefficient ak+1 to a non-zero value only if it shrinks the cost
function:

ak+1 6= 0 ⇔ J(k + 1) < J(k)
⇔ ‖Y ‖22 − ‖Y − ak+1Yk+1‖22 − λ0 > 0

and the next coefficient will take the value which maximizes the improvement. For any
u ∈ I ′, the best subset estimation is the solution to

max
a

{
‖Y ‖22 − ‖Y − aYu‖22 − λ0

}
This gain function to maximize is denoted G(a).

G(a) = ‖Y ‖22 − ‖Y − aYu‖22 − λ0
= σ2 − (Y TY + a2Y Tu Yu − 2aY TYu)− λ0

= 2σ2(aâls − a2

2 −
λ0
2σ2 )

Solving G′(â) = 0 gives â = âls. Hence, when it is worth to add a non-zero coefficient, this
coefficient is equal to the least square estimator. It is worth to add a non-zero coefficient if
G(â) > 0, that is to say when

(âls)2 − (âls)2

2 − λ0

2σ2 > 0 or when |âls| >
√
λ0

σ2

Combining these condition gives the result:

â = âls1|̂als|>ε0

with ε0 =
√
λ0/σ.
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B.3.4 Bias, variance and error of prediction and estimation

Formulae to link error of prediction (Y − Ŷ ) and the error of estimation (β− β̂) when the the
errors are estimated by cross-validation with a testing sample independent from the training
sample. Mentioned at section 8.23, page 235.

BiY = E [X] Biβ (B.21)

VarY = E
[
XVarβXT

]
+ V

(
XE

[
β̂
])

(B.22)

MSEY = BiTβE
[
XTX

]
Biβ + E

[
tr(XVarβXT )

]
+ σ2

0 (B.23)

Proof. of equations (B.21), (B.22) and (B.23).

Equation of the bias (B.21).

BiY = E
[
Ŷ − Y

]
= E

[
X(β̂ − β)− ε

]
= E [X] Biβ

because β̂ is independent from X.

Equation of the variance (B.22).
From the total variance formula, we have

VarY = E
[
V
(
Xβ̂|X

)]
+ V

(
E
[
Xβ̂|X

])
= E

XV (β̂|X)︸ ︷︷ ︸
=Varβ

+ V

XE
[
β̂|X

]
︸ ︷︷ ︸

=E
[
β̂
]


because β̂ is independent from X, the conditioning to X does not matter.

Equation of the MSE (B.23).

From the law of total expectation, we have MSEY = E
[
E
[
(Ŷ − Y )T (Ŷ − Y )|X

]]
.

E
[
(Ŷ − Y )T (Ŷ − Y )|X

]
= E

[
(Ŷ −XE

[
β̂
]

+XE
[
β̂
]
− Y )T (Ŷ −XE

[
β̂
]

+XE
[
β̂
]
− Y )|X

]
= E

[
(Y −XE

[
β̂
]
)T (Y −XE

[
β̂
]
)|X
]

︸ ︷︷ ︸
I

+E
[
(Ŷ −XE

[
β̂
]
)T (Ŷ −XE

[
β̂
]
)|X
]

︸ ︷︷ ︸
II

+2E
[
(Y −XE

[
β̂
]
)T (Ŷ −XE

[
β̂
]
)|X
]

︸ ︷︷ ︸
III

Because β̂ is the estimator built on the sub-sample (YA, A), we can assume that β̂ is
independent of X. In particular, E

[
β̂
]

= E
[
β̂|X

]
, which is helpful to explicit the terms I,

II and III.
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The term I is linked to the bias on β:

I = E
[
(Xβ + ε−XE

[
β̂
]
)T (Xβ + ε−XE

[
β̂
]
)|X
]

= E
[
BiTβXTXBiβ |X

]
+E

[
ε2
]

= BiTβXTXBiβ+E
[
ε2
]

with E
[
ε2
]

= σ2
0 .

The term II is linked to the variance on β:

II = E
[
(Xβ̂ −XE

[
β̂
]
)T (Xβ̂ −XE

[
β̂
]
)|X
]

= tr(V
(
Xβ̂|X

)
) = tr(XVarβXT )

The term III is null:

III = E
[
(Xβ + ε−XE

[
β̂
]
)T (Xβ̂ −XE

[
β̂
]
)|X
]

= (β−E
[
β̂
]
)TXTXE

[
(β̂ − E

[
β̂
]
)|X
]

︸ ︷︷ ︸
=0

= 0

Finally,
E
[
(Ŷ − Y )T (Ŷ − Y )|X

]
= BiTβXTXBiβ + tr(XVarβXT ) + σ2

0

Taking the expectation gives the result.

300



Appendix C

Complete results of 2-by-2
experiments

C.1 Recap of framework

The system described by figure C.1 has been designed to assess the reconstruction system.
Its inputs are parameters of the reconstruction or surroundings for which we want to know
the influence (summarized table C.1). Its output are indicators of some qualities of the
reconstruction method (summarized table C.2). A "2-by-2 experiment" is the run of the
system when only 2 inputs are varying and all outputs are computed. The 2 inputs vary on
a regular grid with 30 points for each (thus, 900 runs for each experiment).

To browse among the figures, use hyperlinks in

• the table of contents.

• the table C.3.

• the list of figures page 384.

Notation Description Place in the system
C0 Kolmogorov "constant" Reconstruction (Lagrangian model)
C1 Fluctuation coefficient Reconstruction (Lagrangian model)
` Spatial interaction length Reconstruction (Lagrangian model)
N Number of particles Reconstruction (filtering)
σadd True observation noise Simulation of observation
σobs Guess of observation noise Reconstruction (filtering)
σX Discretization error in the Lagrangian model Reconstruction (Lagrangian model)
σV Default standard deviation of wind speed Reconstruction (Lagrangian model)
τ Integration time Output computation

Table C.1 – Summary of input parameters for the sensitivity analysis
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Figure C.1 – Diagram of the system on which is done the sensitivity analysis.

Notation Description Definition equation Results
NG0 Number of null potential NG0 = |{G = 0}| p.345
b Slope of the wind PSD Γ(κ) = Aκb p.349
rk Root-mean-squared error on the TKE ‖kLS(z, t)τ − kT (z, t′)‖2 p.353
rV Root-mean-squared error on the wind rV = ‖V̂z,t − V ref

z,t ‖2 p.357
Texe Time of execution Texe = tend − tstart p.361

Table C.2 – Summary of output parameters for the sensitivity analysis

C0 C1 ` N σadd σobs σV σX τ

C0 p.303 p.306 p.309
C1 p.303
` p.306 p.312 p.315 p.318
N p.312 p.321 p.324 p.327
σadd p.315 p.321 p.330 p.333
σobs p.318 p.324 p.330 p.336 p.339
σV p.342
σX p.309 p.336 p.342
τ p.327 p.333 p.339

Table C.3 – Couples of inputs experimented: results are on the indicated page (hyperlink).
This table is a copy of 7.1.
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C.2 Results by experiment (couple of inputs)

An experiment consists in the computation of all 5 outputs when only two inputs vary on a
regular grid. Table C.3 gives all the experiments carried out. There are 13 experiments in
total.

C.2.1 C0 and C1

In this experiment, only C0 and C1 vary. To check another experiment, go to table C.3
(hyperlinks in the table). To have more explanation about these inputs, go to table C.1.

Figure C.2 – Number of null potential when C0 and C1 vary.
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Figure C.3 – PSD slope when C0 and C1 vary.

Figure C.4 – RMSE on TKE when C0 and C1 vary.
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Figure C.5 – RMSE on wind when C0 and C1 vary.

Figure C.6 – Execution time when C0 and C1 vary.
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C.2.2 C0 and `

In this experiment, only C0 and ` vary. To check another experiment, go to table C.3 (hy-
perlinks in the table). To have more explanation about these inputs, go to table C.1.

Figure C.7 – Number of null potential when C0 and ` vary.
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Figure C.8 – PSD slope when C0 and ` vary.

Figure C.9 – RMSE on TKE when C0 and ` vary.
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Figure C.10 – RMSE on wind when C0 and ` vary.

Figure C.11 – Execution time when C0 and ` vary.
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C.2.3 C0 and σX

In this experiment, only C0 and σX vary. To check another experiment, go to table C.3
(hyperlinks in the table). To have more explanation about these inputs, go to table C.1.

Figure C.12 – Number of null potential when C0 and σX vary.
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Figure C.13 – PSD slope when C0 and σX vary.

Figure C.14 – RMSE on TKE when C0 and σX vary.
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Figure C.15 – RMSE on wind when C0 and σX vary.

Figure C.16 – Execution time when C0 and σX vary.
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C.2.4 ` and N

In this experiment, only ` and N vary. To check another experiment, go to table C.3 (hyper-
links in the table). To have more explanation about these inputs, go to table C.1.

Figure C.17 – Number of null potential when ` and N vary.
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Figure C.18 – PSD slope when ` and N vary.

Figure C.19 – RMSE on TKE when ` and N vary.
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Figure C.20 – RMSE on wind when ` and N vary.

Figure C.21 – Execution time when ` and N vary.
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C.2.5 ` and σadd

In this experiment, only ` and σadd vary. To check another experiment, go to table C.3
(hyperlinks in the table). To have more explanation about these inputs, go to table C.1.

Figure C.22 – Number of null potential when ` and σadd vary.
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Figure C.23 – PSD slope when ` and σadd vary.

Figure C.24 – RMSE on TKE when ` and σadd vary.
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Figure C.25 – RMSE on wind when ` and σadd vary.

Figure C.26 – Execution time when ` and σadd vary.
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C.2.6 ` and σobs

In this experiment, only ` and σobs vary. To check another experiment, go to table C.3
(hyperlinks in the table). To have more explanation about these inputs, go to table C.1.

Figure C.27 – Number of null potential when ` and σobs vary.
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Figure C.28 – PSD slope when ` and σobs vary.

Figure C.29 – RMSE on TKE when ` and σobs vary.
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Figure C.30 – RMSE on wind when ` and σobs vary.

Figure C.31 – Execution time when ` and σobs vary.
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C.2.7 N and σadd

In this experiment, only N and σadd vary. To check another experiment, go to table C.3
(hyperlinks in the table). To have more explanation about these inputs, go to table C.1.

Figure C.32 – Number of null potential when N and σadd vary.
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Figure C.33 – PSD slope when N and σadd vary.

Figure C.34 – RMSE on TKE when N and σadd vary.
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Figure C.35 – RMSE on wind when N and σadd vary.

Figure C.36 – Execution time when N and σadd vary.
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C.2.8 N and σobs

In this experiment, only N and σobs vary. To check another experiment, go to table C.3
(hyperlinks in the table). To have more explanation about these inputs, go to table C.1.

Figure C.37 – Number of null potential when N and σobs vary.
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Figure C.38 – PSD slope when N and σobs vary.

Figure C.39 – RMSE on TKE when N and σobs vary.
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Figure C.40 – RMSE on wind when N and σobs vary.

Figure C.41 – Execution time when N and σobs vary.
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C.2.9 N and τ

In this experiment, only N and τ vary. To check another experiment, go to table C.3 (hyper-
links in the table). To have more explanation about these inputs, go to table C.1.

Figure C.42 – Number of null potential when N and τ vary.
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Figure C.43 – PSD slope when N and τ vary.

Figure C.44 – RMSE on TKE when N and τ vary.
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Figure C.45 – RMSE on wind when N and τ vary.

Figure C.46 – Execution time when N and τ vary.
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C.2.10 σadd and σobs

In this experiment, only σadd and σobs vary. To check another experiment, go to table C.3
(hyperlinks in the table). To have more explanation about these inputs, go to table C.1.

Figure C.47 – Number of null potential when σadd and σobs vary.
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Figure C.48 – PSD slope when σadd and σobs vary.

Figure C.49 – RMSE on TKE when σadd and σobs vary.
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Figure C.50 – RMSE on wind when σadd and σobs vary.

Figure C.51 – Execution time when σadd and σobs vary.
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C.2.11 σadd and τ

In this experiment, only σadd and τ vary. To check another experiment, go to table C.3
(hyperlinks in the table). To have more explanation about these inputs, go to table C.1.

Figure C.52 – Number of null potential when σadd and τ vary.
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Figure C.53 – PSD slope when σadd and τ vary.

Figure C.54 – RMSE on TKE when σadd and τ vary.
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Figure C.55 – RMSE on wind when σadd and τ vary.

Figure C.56 – Execution time when σadd and τ vary.

335



C.2.12 σobs and σX

In this experiment, only σobs and σX vary. To check another experiment, go to table C.3
(hyperlinks in the table). To have more explanation about these inputs, go to table C.1.

Figure C.57 – Number of null potential when σobs and σX vary.
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Figure C.58 – PSD slope when σobs and σX vary.

Figure C.59 – RMSE on TKE when σobs and σX vary.
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Figure C.60 – RMSE on wind when σobs and σX vary.

Figure C.61 – Execution time when σobs and σX vary.
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C.2.13 σobs and τ

In this experiment, only σobs and τ vary. To check another experiment, go to table C.3
(hyperlinks in the table). To have more explanation about these inputs, go to table C.1.

Figure C.62 – Number of null potential when σobs and τ vary.
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Figure C.63 – PSD slope when σobs and τ vary.

Figure C.64 – RMSE on TKE when σobs and τ vary.
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Figure C.65 – RMSE on wind when σobs and τ vary.

Figure C.66 – Execution time when σobs and τ vary.
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C.2.14 σV and σX

In this experiment, only σV and σX vary. To check another experiment, go to table C.3
(hyperlinks in the table). To have more explanation about these inputs, go to table C.1.

Figure C.67 – Number of null potential when σV and σX vary.
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Figure C.68 – PSD slope when σV and σX vary.

Figure C.69 – RMSE on TKE when σV and σX vary.
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Figure C.70 – RMSE on wind when σV and σX vary.

Figure C.71 – Execution time when σV and σX vary.
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C.3 Results by output

C.3.1 Number of null potential

In this subsection are shown only the influence on the number of null potential NG0. First
are shown the Sobol indices for this output the most informative experiment and then the
rest of experiments. To browse by experiment, use the hyperlinks in table C.3 (all outputs
are computed for each experiment). To check another output, go back to table C.2. There is
also a list of figures page 384.

Figure C.72 – Sobol indices (score of influence) for number of null potential. Main effect in
blue (effect of input alone), total effect in green (effect of input with all its interactions).
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Figure C.73 – Number of null potential when σadd and σobs vary.

Figure C.74 – Number of null potential when
C0 and C1 vary.

Figure C.75 – Number of null potential when
C0 and ` vary.
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Figure C.76 – Number of null potential when
` and N vary.

Figure C.77 – Number of null potential when
` and σadd vary.

Figure C.78 – Number of null potential when
` and σobs vary.

Figure C.79 – Number of null potential when
N and σadd vary.

Figure C.80 – Number of null potential when
N and σobs vary.

Figure C.81 – Number of null potential when
N and τ vary.
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Figure C.82 – Number of null potential when
σV and σX vary.

Figure C.83 – Number of null potential when
σadd and τ vary.

Figure C.84 – Number of null potential when
σobs and σX vary.

Figure C.85 – Number of null potential when
σobs and τ vary.
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C.3.2 Slope of PSD of wind

In this subsection are shown only the influence on the slope of the estimated wind power
density spectrum b. First are shown the Sobol indices for this output the most informative
experiment and then the rest of experiments. To browse by experiment, use the hyperlinks in
table C.3 (all outputs are computed for each experiment). To check another output, go back
to table C.2. There is also a list of figures page 384.

Figure C.86 – Sobol indices (score of influence) for PSD slope. Main effect in blue (effect of
input alone), total effect in green (effect of input with all its interactions).
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Figure C.87 – Slope of PSD when σadd and σobs vary.

Figure C.88 – Slope of PSD when C0 and C1
vary.

Figure C.89 – Slope of PSD when C0 and `
vary.
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Figure C.90 – Slope of PSD when ` and N
vary.

Figure C.91 – Slope of PSD when ` and σadd
vary.

Figure C.92 – Slope of PSD when ` and σobs

vary.
Figure C.93 – Slope of PSD when N and σadd
vary.

Figure C.94 – Slope of PSD when N and σobs
vary.

Figure C.95 – Slope of PSD when N and τ
vary.
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Figure C.96 – Slope of PSD when σV and σX
vary.

Figure C.97 – Slope of PSD when σadd and
τ vary.

Figure C.98 – Slope of PSD when σobs and
σX vary.

Figure C.99 – Slope of PSD when σobs and τ
vary.

352



C.3.3 RMSE on TKE

In this subsection are shown only the influence on the root-mean-squared error on turbulent
kinetic energy rk. First are shown the Sobol indices for this output the most informative
experiment and then the rest of experiments. To browse by experiment, use the hyperlinks in
table C.3 (all outputs are computed for each experiment). To check another output, go back
to table C.2. There is also a list of figures page 384.

Figure C.100 – Sobol indices (score of influence) for TKE RMSE. Main effect in blue (effect
of input alone), total effect in green (effect of input with all its interactions).
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Figure C.101 – TKE RMSE when ` and σadd vary.

Figure C.102 – TKE RMSE when C0 and C1
vary.

Figure C.103 – TKE RMSE when C0 and `
vary.
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Figure C.104 – TKE RMSE when ` and N
vary.

Figure C.105 – TKE RMSE when σV and σX
vary.

Figure C.106 – TKE RMSE when ` and σobs

vary.
Figure C.107 – TKE RMSE when N and σadd
vary.

Figure C.108 – TKE RMSE when N and σobs
vary.

Figure C.109 – TKE RMSE when N and τ
vary.
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Figure C.110 – TKE RMSE when σadd and
σobs vary.

Figure C.111 – TKE RMSE when σadd and
τ vary.

Figure C.112 – TKE RMSE when σobs and
σX vary.

Figure C.113 – TKE RMSE when σobs and τ
vary.
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C.3.4 RMSE on wind

In this subsection are shown only the influence on the root-mean-squared error on vertical
wind rV . First are shown the Sobol indices for this output the most informative experiment
and then the rest of experiments. To browse by experiment, use the hyperlinks in table C.3
(all outputs are computed for each experiment). To check another output, go back to table
C.2. There is also a list of figures page 384.

Figure C.114 – Sobol indices (score of influence) for wind RMSE. Main effect in blue (effect
of input alone), total effect in green (effect of input with all its interactions).
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Figure C.115 – Wind RMSE when N and σobs vary.

Figure C.116 – Wind RMSE when C0 and C1
vary.

Figure C.117 – Wind RMSE when C0 and `
vary.
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Figure C.118 – Wind RMSE when σV and
σX vary.

Figure C.119 – Wind RMSE when ` and σadd
vary.

Figure C.120 – Wind RMSE when ` and σobs
vary.

Figure C.121 – Wind RMSE when N and σadd
vary.

Figure C.122 – Wind RMSE when ` and N
vary.

Figure C.123 – Wind RMSE when N and τ
vary.
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Figure C.124 – Wind RMSE when σadd and
σobs vary.

Figure C.125 – Wind RMSE when σadd and
τ vary.

Figure C.126 – Wind RMSE when σobs and
σX vary.

Figure C.127 – Wind RMSE when σobs and
τ vary.
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C.3.5 Execution time

In this subsection are shown only the influence on the execution time Texe. First are shown
the Sobol indices for this output the most informative experiment and then the rest of exper-
iments. To browse by experiment, use the hyperlinks in table C.3 (all outputs are computed
for each experiment). To check another output, go back to table C.2. There is also a list of
figures page 384.

Figure C.128 – Sobol indices (score of influence) for execution time. Main effect in blue (effect
of input alone), total effect in green (effect of input with all its interactions).
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Figure C.129 – Execution time when σV and σX vary.

Figure C.130 – Execution time when C0 and
C1 vary.

Figure C.131 – Execution time when C0 and
` vary.
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Figure C.132 – Execution time when ` and
N vary.

Figure C.133 – Execution time when ` and
σadd vary.

Figure C.134 – Execution time when ` and σobs
vary.

Figure C.135 – Execution time when N and
σadd vary.

Figure C.136 – Execution time when N and
σobs vary.

Figure C.137 – Execution time when N and
τ vary.
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Figure C.138 – Execution time when σadd

and σobs vary.
Figure C.139 – Execution time when σadd

and τ vary.

Figure C.140 – Execution time when σobs and
σX vary.

Figure C.141 – Execution time when σobs and
τ vary.
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Sensitivity analysis of a filtering algorithm for wind
lidar measurements

Thomas Rieutord

Centre National de Recherches Météorologiques (UMR 3589)
Météo-France, CNRS

42 avenue Gaspard Coriolis, Toulouse, France.

Abstract — Wind energy industry and airport safety are in need of atmospheric obser-
vations. Remote sensors, such as lidars, are well proven and common technology to provide
wind measurements in the first hundreds of meters of altitude. However, acquisition abilities
of lidars are polluted by measurement noise. Using non-linear filtering techniques, we took
part at the development of an algorithm improving wind and turbulence estimations. The
process is based on a representation of the atmosphere with fluid particles. It uses a stochas-
tic Lagrangian model of turbulence and a genetic selection filtering technique. Its efficiency
depends of the setting of various parameters. Their values were fixed experimentally during
the development phase. But their influence has never been assessed. This work addresses
this question with a variance-based sensitivity analysis. New estimators of Sobol indices,
using penalized regression have been tested. These estimators ensure the lowest Sobol indices
automatically go to zero so the overall interpretation is simplified. The sensitivity analysis
allows to reduce the system from 5 outputs and 9 inputs to 3 inputs (number of particles, real
observation noise, observation noise given to the filter) and 2 outputs (wind spectrum slope,
root-mean-squared error on wind). With this reduced system we determined a procedure to
correctly set the most important parameters. The observation noise given to the filter is well
set when the wind spectrum slope has the expected value of -5/3. Once it is set correctly, the
error on wind is minimum and its expression is known.
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Analyse de sensibilité d’un algorithme de filtrage
pour les mesures de vent par lidar

Thomas Rieutord

Centre National de Recherches Météorologiques (UMR 3589)
Météo-France, CNRS

42 avenue Gaspard Coriolis, Toulouse, France.

Résumé — L’industrie éolienne et l’aéronautique ont des besoins importants en matière
de mesure de vent dans les premières centaines de mètres de l’atmosphère. Les lidars sont
des instruments répandus et éprouvés pour ce type de mesure. Cependant, leurs qualités
d’acquisition sont atténuées par un bruit de mesure systématique. En utilisant des techniques
sur le filtrage non-linéaire nous avons participé au développement d’un algorithme qui améliore
l’estimation du vent et de la turbulence. Cet algorithme est basé sur une représentation
de l’atmosphère par des particules fluides. Il utilise un modèle lagrangien stochastique de
turbulence et un filtrage par sélection génétique. Son efficacité dépend du réglage de certains
paramètres, fixés à une valeur acceptable à l’issue de la phase de développement. Mais
l’influence de ces paramètres n’a jamais été étudiée. Ce travail de thèse répond à cette
question par une analyse de sensibilité basée sur la décomposition de variance. De nouveaux
estimateurs pour les indices de Sobol, utilisant des régression pénalisées, ont été testés. Ces
estimateurs mettent les indices de Sobol les plus petits automatiquement à zéro pour faciliter
l’interprétation globale. L’analyse de sensibilité permet de réduire le système à 9 entrées et
5 sorties à un système de 3 entrées (le nombre de particules, le bruit d’observation réel et le
bruit d’observation donné au filtre) et 2 sorties (la pente du spectre de vent et l’erreur sur
le vent). Grâce à ce système réduit, nous mettons en évidence une méthode de réglage des
paramètres d’entrée les plus importants. Le bruit d’observation donné au filtre est bien réglé
lorsque la pente du spectre est à la valeur cible de -5/3. Une fois ce bruit réglé, l’erreur sur
le vent est minimale avec une expression connue.

Mots clés — analyse de sensibilité, filtrage non-linéaire, lidar Doppler, turbulence.
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