Modeling the smoky troposphere of the southeast Atlantic: a comparison to ORACLES airborne observations from September of 2016 - Météo-France Accéder directement au contenu
Article Dans Une Revue Atmospheric Chemistry and Physics Année : 2020

Modeling the smoky troposphere of the southeast Atlantic: a comparison to ORACLES airborne observations from September of 2016

Yohei Shinozuka
  • Fonction : Auteur
Pablo Saide
Gonzalo Ferrada
Sharon Burton
  • Fonction : Auteur
Richard Ferrare
  • Fonction : Auteur
Sarah Doherty
  • Fonction : Auteur
Hamish Gordon
Karla Longo
  • Fonction : Auteur
Marc Mallet
  • Fonction : Auteur
Yan Feng
Qiaoqiao Wang
  • Fonction : Auteur
Yafang Cheng
Amie Dobracki
  • Fonction : Auteur
Steffen Freitag
Steven Howell
  • Fonction : Auteur
Samuel Leblanc
Connor Flynn
  • Fonction : Auteur
Michal Segal-Rosenhaimer
  • Fonction : Auteur
Kristina Pistone
James Podolske
  • Fonction : Auteur
Eric Stith
  • Fonction : Auteur
Joseph Ryan Bennett
  • Fonction : Auteur
Gregory Carmichael
  • Fonction : Auteur
Arlindo da Silva
  • Fonction : Auteur
Ravi Govindaraju
  • Fonction : Auteur
Ruby Leung
  • Fonction : Auteur
Yang Zhang
  • Fonction : Auteur
Leonhard Pfister
  • Fonction : Auteur
Ju-Mee Ryoo
  • Fonction : Auteur
Jens Redemann
Robert Wood
Paquita Zuidema

Résumé

Abstract. In the southeast Atlantic, well-defined smoke plumes from Africa advect over marine boundary layer cloud decks; both are most extensive around September, when most of the smoke resides in the free troposphere. A framework is put forth for evaluating the performance of a range of global and regional atmospheric composition models against observations made during the NASA ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) airborne mission in September 2016. A strength of the comparison is a focus on the spatial distribution of a wider range of aerosol composition and optical properties than has been done previously. The sparse airborne observations are aggregated into approximately 2∘ grid boxes and into three vertical layers: 3–6 km, the layer from cloud top to 3 km, and the cloud-topped marine boundary layer. Simulated aerosol extensive properties suggest that the flight-day observations are reasonably representative of the regional monthly average, with systematic deviations of 30 % or less. Evaluation against observations indicates that all models have strengths and weaknesses, and there is no single model that is superior to all the others in all metrics evaluated. Whereas all six models typically place the top of the smoke layer within 0–500 m of the airborne lidar observations, the models tend to place the smoke layer bottom 300–1400 m lower than the observations. A spatial pattern emerges, in which most models underestimate the mean of most smoke quantities (black carbon, extinction, carbon monoxide) on the diagonal corridor between 16∘ S, 6∘ E, and 10∘ S, 0∘ E, in the 3–6 km layer, and overestimate them further south, closer to the coast, where less aerosol is present. Model representations of the above-cloud aerosol optical depth differ more widely. Most models overestimate the organic aerosol mass concentrations relative to those of black carbon, and with less skill, indicating model uncertainties in secondary organic aerosol processes. Regional-mean free-tropospheric model ambient single scattering albedos vary widely, between 0.83 and 0.93 compared with in situ dry measurements centered at 0.86, despite minimal impact of humidification on particulate scattering. The modeled ratios of the particulate extinction to the sum of the black carbon and organic aerosol mass concentrations (a mass extinction efficiency proxy) are typically too low and vary too little spatially, with significant inter-model differences. Most models overestimate the carbonaceous mass within the offshore boundary layer. Overall, the diversity in the model biases suggests that different model processes are responsible. The wide range of model optical properties requires further scrutiny because of their importance for radiative effect estimates.
Fichier principal
Vignette du fichier
acp-20-11491-2020.pdf (4.16 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

meteo-03715827 , version 1 (06-07-2022)

Identifiants

Citer

Yohei Shinozuka, Pablo Saide, Gonzalo Ferrada, Sharon Burton, Richard Ferrare, et al.. Modeling the smoky troposphere of the southeast Atlantic: a comparison to ORACLES airborne observations from September of 2016. Atmospheric Chemistry and Physics, 2020, 20 (19), pp.11491-11526. ⟨10.5194/acp-20-11491-2020⟩. ⟨meteo-03715827⟩

Collections

METEO
21 Consultations
26 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More